搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维绝热简正波-抛物方程理论及应用

秦继兴 Katsnelson Boris 彭朝晖 李整林 张仁和 骆文于

引用本文:
Citation:

三维绝热简正波-抛物方程理论及应用

秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于

Three-dimensional adiabatic mode parabolic equation method and its applications

Qin Ji-Xing, Katsnelson Boris, Peng Zhao-Hui, Li Zheng-Lin, Zhang Ren-He, Luo Wen-Yu
PDF
导出引用
  • 复杂海域通常存在环境参数的水平变化, 这会导致声波在传播过程中发生水平折射, 呈现出三维效应. 利用绝热简正波-抛物方程理论进行三维声场建模, 在垂直方向上使用标准简正波模型KRAKEN求解本征值和本征函数, 水平方向上使用宽角抛物方程模型RAM求解简正波幅度. 该模型物理意义清晰, 计算效率高, 但由于忽略了各号简正波之间的耦合, 只适用于环境参数水平变化缓慢的问题. 使用该模型分析了内波环境和大陆架楔形波导中的声波水平折射现象, 结果表明, 声波的水平折射将水平平面分为不同区域, 每个区域内的声场结构明显不同. 此外, 声强在水平平面内的分布与声源频率和简正波号数有关, 这种依赖关系是导致声信号频谱变化、波形畸变以及声场时空扰动的主要原因.
    Complex zone of the ocean is often characterized by horizontal variations of environmental parameters(bathymetry, sound speed profile, bottom properties etc.), initiating redistribution of the sound field in horizontal plane, which is the so-called three-dimensional (3D) effect. Based on the adiabatic mode parabolic equation method, modeling of 3D effects is carried out, in which the eigenvalues and eigenfunctions are calculated by the standard normal mode model KRAKEN, and the amplitude corresponding to each mode is computed by the wide-angle parabolic equation model RAM. The present 3D model is very efficient and can give clear physical meaning, but it can be only applied to a waveguide whose properties vary gradually with horizontal range due to the adiabatic assumption between different modes. This model is then used to analyze the horizontal refraction caused by internal waves and by a coastal wedge. The numerical results show that there are several areas in the horizontal plane, corresponding to different structures of intensity distributions. Moreover, the redistribution of the sound field in horizontal plane depends on source frequency and mode number. Frequency and modal dependences lead to variations of spectrum, distortion of signal with some spectrum, and spatiotemporal fluctuations of the sound field.
      通信作者: 秦继兴, qjx@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11434012, 41561144006, 11174312)和海洋公益性行业科研专项经费(批准号: 201405032) 资助的课题.
      Corresponding author: Qin Ji-Xing, qjx@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006, 11174312), and the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201405032).
    [1]

    Tappert F D 1977 Wave Propagation and Underwater Acoustics (New York: Springer) p224

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Pierce A D 1965 J. Acoust Soc. Am. 37 19

    [4]

    Evans R B 1983 J. Acoust Soc. Am. 74 188

    [5]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [6]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [7]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [8]

    Athanassoulis G A, Belibassakis K A, Mitsoudis D A Kampanis N A, Dougalis V A 2008 J. Comput. Acoust. 16 83

    [9]

    Schmidt H, Glattetre J 1985 J. Acoust. Soc. Am. 78 2105

    [10]

    Collins M D, Schmidt H, Siegmann W L 2000 J. Acoust. Soc. Am 107 1964

    [11]

    Stephen R A 1988 Rev. Geophys. 26 445

    [12]

    Thompson L L 2006 J. Acoust. Soc. Am. 119 1315

    [13]

    Zampolli M, Tesei A, Jensen F B Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

    [14]

    Cornyn J J 1973 GRASS: A Digital-Computer Ray-tracing and Transmission-Loss-Prediction System (Washington, DC: Naval Research Laboratory) Technical Report 7621

    [15]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [16]

    Felsen L B 1981 J. Acoust. Soc. Am. 69 352

    [17]

    Abawi A T, Kuperman W A, Collins M D 1997 J. Acoust. Soc. Am. 102 233

    [18]

    Perkins J S, Baer R N 1982 . J. Acoust. Soc. Am. 72 515

    [19]

    Marfurt K J 1984 Geophysics 49 533

    [20]

    Baer R N 1981 . J. Acoust. Soc. Am. 69 70

    [21]

    Chiu C S, Ehret L L 1990 Computational Acoustics II: Ocean-Acoustic Models and Supercomputing (Amsterdam: Elsevier) p182

    [22]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [23]

    Lee D, Botsea G, Siegmann W L 1992 J. Acoust. Soc. Am. 91 3192

    [24]

    Piao S C 1999 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [朴胜春 1999 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [25]

    Jones R M, Riley J P, Georges T M 1986 HARPO: A Versatile Three-dimensional Hamiltonian Ray-tracing Program for Acoustic Waves in an Ocean with Irregular Bottom (Boulder, Colorado: Environmental Research Laboratories) Technical Report

    [26]

    Collins M D 1993 J. Acoust. Soc. Am. 94 2269

    [27]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [28]

    Fawcett J A, Dawson T W 1990 J. Acoust. Soc. Am. 88 1913

    [29]

    Orris G J, Collins M D 1994 J. Acoust. Soc. Am. 96 1725

    [30]

    Qin J X, Luo W Y, Zhang R H Yang C M 2013 Chin. Phys. Lett. 30 114301

    [31]

    Katsnelson B G, Pereselkov S A 2000 Acoust. Phys. 46 684

    [32]

    Katsnelson B G, Lynch J, Tshoidze A V 2007 Acoust. Phys. 53 611

    [33]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical Report SM-245

    [34]

    Collins M D User's Guide for RAM Versions 1.0 and 1.0p. (Washington, DC: Naval Research Laboratory)

    [35]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag) pp149-158

    [36]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [37]

    Collins M D 1992 J. Acoust. Soc. Am. 92 2069

    [38]

    Katsnelson B G, Malykhin A Yu 2012 Acoust. Phys. 58 301

  • [1]

    Tappert F D 1977 Wave Propagation and Underwater Acoustics (New York: Springer) p224

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Pierce A D 1965 J. Acoust Soc. Am. 37 19

    [4]

    Evans R B 1983 J. Acoust Soc. Am. 74 188

    [5]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [6]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [7]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [8]

    Athanassoulis G A, Belibassakis K A, Mitsoudis D A Kampanis N A, Dougalis V A 2008 J. Comput. Acoust. 16 83

    [9]

    Schmidt H, Glattetre J 1985 J. Acoust. Soc. Am. 78 2105

    [10]

    Collins M D, Schmidt H, Siegmann W L 2000 J. Acoust. Soc. Am 107 1964

    [11]

    Stephen R A 1988 Rev. Geophys. 26 445

    [12]

    Thompson L L 2006 J. Acoust. Soc. Am. 119 1315

    [13]

    Zampolli M, Tesei A, Jensen F B Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

    [14]

    Cornyn J J 1973 GRASS: A Digital-Computer Ray-tracing and Transmission-Loss-Prediction System (Washington, DC: Naval Research Laboratory) Technical Report 7621

    [15]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [16]

    Felsen L B 1981 J. Acoust. Soc. Am. 69 352

    [17]

    Abawi A T, Kuperman W A, Collins M D 1997 J. Acoust. Soc. Am. 102 233

    [18]

    Perkins J S, Baer R N 1982 . J. Acoust. Soc. Am. 72 515

    [19]

    Marfurt K J 1984 Geophysics 49 533

    [20]

    Baer R N 1981 . J. Acoust. Soc. Am. 69 70

    [21]

    Chiu C S, Ehret L L 1990 Computational Acoustics II: Ocean-Acoustic Models and Supercomputing (Amsterdam: Elsevier) p182

    [22]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [23]

    Lee D, Botsea G, Siegmann W L 1992 J. Acoust. Soc. Am. 91 3192

    [24]

    Piao S C 1999 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [朴胜春 1999 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [25]

    Jones R M, Riley J P, Georges T M 1986 HARPO: A Versatile Three-dimensional Hamiltonian Ray-tracing Program for Acoustic Waves in an Ocean with Irregular Bottom (Boulder, Colorado: Environmental Research Laboratories) Technical Report

    [26]

    Collins M D 1993 J. Acoust. Soc. Am. 94 2269

    [27]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [28]

    Fawcett J A, Dawson T W 1990 J. Acoust. Soc. Am. 88 1913

    [29]

    Orris G J, Collins M D 1994 J. Acoust. Soc. Am. 96 1725

    [30]

    Qin J X, Luo W Y, Zhang R H Yang C M 2013 Chin. Phys. Lett. 30 114301

    [31]

    Katsnelson B G, Pereselkov S A 2000 Acoust. Phys. 46 684

    [32]

    Katsnelson B G, Lynch J, Tshoidze A V 2007 Acoust. Phys. 53 611

    [33]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical Report SM-245

    [34]

    Collins M D User's Guide for RAM Versions 1.0 and 1.0p. (Washington, DC: Naval Research Laboratory)

    [35]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag) pp149-158

    [36]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [37]

    Collins M D 1992 J. Acoust. Soc. Am. 92 2069

    [38]

    Katsnelson B G, Malykhin A Yu 2012 Acoust. Phys. 58 301

  • [1] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220411
    [2] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征. 物理学报, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [3] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [4] 张泽众, 骆文于, 庞哲, 周益清. 孤子内波环境下三维声传播建模. 物理学报, 2019, 68(20): 204302. doi: 10.7498/aps.68.20190478
    [5] 陈科, 王宏伟, 盛立, 尤云祥. 拖曳体激发内波时空特性实验及其理论模型. 物理学报, 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920
    [6] 谢磊, 孙超, 刘雄厚, 蒋光禹, 孔德智. 陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析. 物理学报, 2017, 66(19): 194301. doi: 10.7498/aps.66.194301
    [7] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [8] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析. 物理学报, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究. 物理学报, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [10] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [11] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究. 物理学报, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [13] 温文媖, 陈小刚, 宋金宝. 三层流体系统非线性界面内波传播理论的研究. 物理学报, 2010, 59(10): 7149-7157. doi: 10.7498/aps.59.7149
    [14] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [15] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法. 物理学报, 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [16] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [17] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [18] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解. 物理学报, 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  3400
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-18
  • 修回日期:  2015-10-20
  • 刊出日期:  2016-02-05

三维绝热简正波-抛物方程理论及应用

  • 1. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190;
  • 2. Department of Marine Geosciences, School of Marine Sciences, University of Haifa, Haifa 31905;
  • 3. 中国科学院声学研究所, 南海研究站, 海口 570105
  • 通信作者: 秦继兴, qjx@mail.ioa.ac.cn
    基金项目: 国家自然科学基金(批准号: 11434012, 41561144006, 11174312)和海洋公益性行业科研专项经费(批准号: 201405032) 资助的课题.

摘要: 复杂海域通常存在环境参数的水平变化, 这会导致声波在传播过程中发生水平折射, 呈现出三维效应. 利用绝热简正波-抛物方程理论进行三维声场建模, 在垂直方向上使用标准简正波模型KRAKEN求解本征值和本征函数, 水平方向上使用宽角抛物方程模型RAM求解简正波幅度. 该模型物理意义清晰, 计算效率高, 但由于忽略了各号简正波之间的耦合, 只适用于环境参数水平变化缓慢的问题. 使用该模型分析了内波环境和大陆架楔形波导中的声波水平折射现象, 结果表明, 声波的水平折射将水平平面分为不同区域, 每个区域内的声场结构明显不同. 此外, 声强在水平平面内的分布与声源频率和简正波号数有关, 这种依赖关系是导致声信号频谱变化、波形畸变以及声场时空扰动的主要原因.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回