搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管薄膜场蒸发效应

马玉龙 向伟 金大志 陈磊 姚泽恩 王琦龙

引用本文:
Citation:

碳纳米管薄膜场蒸发效应

马玉龙, 向伟, 金大志, 陈磊, 姚泽恩, 王琦龙

Field evaporation behaviour for carbon nanotube thin-film

Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long
PDF
导出引用
  • 在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240300V)、场增强因子下降(83004200)、蒸发阈值场上升(1012.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.
    In recent years, the carbon nanotube (CNT) emitters used for ion sources or gas sensors have been investigated, and the progress of several approaches such as field ionization and field desorption sources has been reported. However, a major concern for these applications is possible loss of CNTs caused by field evaporation, which can shorten the lifetimes of CNT-based emitters used for high electric field ion sources. So in CNT-based field emitter technology, emitter lifetime and degradation will be key parameters to be controlled. However, up to now only very few investigations in this direction have been conducted. The reason for this might lie in the fact that one often considers that the threshold value of field evaporation for a kind of material ( 40 V/nm) is much higher than the field of ionization or desorption ( 10 V/nm) according to the metal material characteristics (such as the threshold values of field evaporation for tungsten and molybdenum are 54 V/nm and 45 V/nm, respectively). In this work, the carbon nanotube thin-film (the density of CNTs is about 2.5108/cm2) is fabricated by screen-printing method, and the field evaporation behavior of CNT thin-film is studied experimentally in an ultrahigh vacuum system typically operating at a pressure of lower than 10-9 Torr after a 4-hour bake-out at ~200℃. Unlike the vertically aligned CNT array having higher electric field around the edge of the array because of the shielding effect, the printed CNT thin-film has more uniform distribution of electric field and is very easy to relize the mass production. The results show that the prepared CNT thin-film has quite obvious field evaporation behavior (some contaminants have deposited on the surface of grid after field evaporation, and energy-dispersive X-ray spectroscopy elemental mapping result of the grid indicates that the contaminants consist mainly of carbon elements), with turn-on field in a range of 10.0-12.6 V/nm, ion current could reach up to hundreds of pA. Meanwhile, the results with scanning electron microscope analysis and field electron emission measurement indicate that the CNT distribution turns into more non-uniform distribution after field evaporation; even some CNTs are directly dragged away from the substrate by the strong field. The field evaporation of CNT thin-film also leads to field electron emission onset voltage increasing from 240 V to 300 V, field enhancement factor decreasing from 8300 to 4200, and threshold field of field evaporation rising from 10.0 V/nm to 12.6 V/nm. However, the repeatability of sample treated by the field evaporation brings about an improvement to a certain extent. It could be understood in this way: upon applying a positive voltage, the most protruding parts, which have the strongest emissive capability, are evaporated first, which leads to the declined field enhancement factor; the parts of CNTs which have relatively weak emissive capability are not evaporated. So the uniformity of electric field is improved through reducing the difference in field enhancement factor rather than surface morphology between carbon nanotubes. The field evaporation of CNT thin-film is also a process which improves the uniformity of electric field. Therefore, the stability and repeatability of the field electron emission for carbon nanotube thin-film are improved naturally.
      通信作者: 姚泽恩, zeyao@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11375155, 11375077)资助的课题.
      Corresponding author: Yao Ze-En, zeyao@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375155, 11375077).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Henning T, Salama F 1998 Science 282 2204

    [3]

    Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148

    [4]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [5]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [6]

    Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [7]

    Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763

    [8]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502

    [9]

    Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]

    [10]

    Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103

    [11]

    Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12

    [12]

    Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503

    [13]

    Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610

    [14]

    Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107

    [15]

    Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312

    [16]

    O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404

    [17]

    Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218

    [18]

    de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907

    [19]

    Chen J, Wu F 2004 Appl. Phys. A 78 989

    [20]

    Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57

    [21]

    Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713

    [22]

    Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727

    [23]

    Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912

    [24]

    Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270

    [25]

    Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345

    [26]

    Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342

    [27]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [28]

    Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474

    [29]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [30]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [31]

    Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)

    [32]

    Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]

    [33]

    Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6

    [34]

    Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64

    [35]

    Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906

    [36]

    Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488

    [37]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550

    [38]

    Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343

    [39]

    Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571

    [40]

    Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179

    [41]

    Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724

    [42]

    Kellogg G L 1983 Phys. Rev. B 28 1957

    [43]

    Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439

    [44]

    Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]

    [45]

    Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263

    [46]

    Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873

    [47]

    Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406

    [48]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173

    [49]

    Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248

    [50]

    Forbes R G 1999 J. Vac. Sci. Technol. B 17 526

    [51]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Henning T, Salama F 1998 Science 282 2204

    [3]

    Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148

    [4]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [5]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [6]

    Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783

    [7]

    Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763

    [8]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502

    [9]

    Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]

    [10]

    Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103

    [11]

    Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12

    [12]

    Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503

    [13]

    Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610

    [14]

    Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107

    [15]

    Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312

    [16]

    O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404

    [17]

    Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218

    [18]

    de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907

    [19]

    Chen J, Wu F 2004 Appl. Phys. A 78 989

    [20]

    Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57

    [21]

    Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713

    [22]

    Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727

    [23]

    Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912

    [24]

    Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270

    [25]

    Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345

    [26]

    Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342

    [27]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654

    [28]

    Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474

    [29]

    Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49

    [30]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [31]

    Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)

    [32]

    Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]

    [33]

    Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6

    [34]

    Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64

    [35]

    Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906

    [36]

    Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488

    [37]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550

    [38]

    Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343

    [39]

    Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571

    [40]

    Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179

    [41]

    Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724

    [42]

    Kellogg G L 1983 Phys. Rev. B 28 1957

    [43]

    Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439

    [44]

    Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]

    [45]

    Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263

    [46]

    Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873

    [47]

    Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406

    [48]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173

    [49]

    Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248

    [50]

    Forbes R G 1999 J. Vac. Sci. Technol. B 17 526

    [51]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

  • [1] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究. 物理学报, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [2] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [3] 雷达, 孟根其其格, 张荷亮, 智颖飙. 一种平行栅碳纳米管阵列阴极的场发射特性研究. 物理学报, 2013, 62(24): 248502. doi: 10.7498/aps.62.248502
    [4] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [5] 潜力, 王昱权, 刘亮, 范守善. 碳纳米管在大气压环境中的场致发射特性. 物理学报, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [6] 王益军, 王六定, 杨敏, 刘光清, 严诚. 分层掺B和吸附H2O碳纳米管的结构稳定性及电子场发射性能. 物理学报, 2010, 59(7): 4950-4954. doi: 10.7498/aps.59.4950
    [7] 何春山, 王伟良, 陈桂华, 李志兵. 镜像势对碳纳米管阵列场发射特性的影响. 物理学报, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [8] 雷达, 王维彪, 曾乐勇, 梁静秋. 栅极调制纳米线的场增强因子计算. 物理学报, 2009, 58(5): 3383-3389. doi: 10.7498/aps.58.3383
    [9] 孙海军, 梁世东. Peierls相变与磁场中碳纳米管的场发射. 物理学报, 2008, 57(3): 1930-1934. doi: 10.7498/aps.57.1930
    [10] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [11] 廖庆亮, 张 跃, 黄运华, 齐俊杰, 高战军, 夏连胜, 张 篁. 碳纳米管阴极的短脉冲爆炸场发射与等离子体膨胀. 物理学报, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [12] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 郭大勃, 元 光, 宋翠华, 顾长志, 王 强. 碳纳米管的变温场发射. 物理学报, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [15] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究. 物理学报, 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [16] 王 淼, 尚学府, 李振华, 王新庆, 徐亚伯. 纳米碳管阵列场增强因子的计算. 物理学报, 2006, 55(2): 797-802. doi: 10.7498/aps.55.797
    [17] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [18] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响. 物理学报, 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [19] 张 兰, 马会中, 李会军, 杨仕娥, 姚 宁, 胡欢陵, 张兵临. 类富勒烯纳米晶CNx薄膜及其场致电子发射特性. 物理学报, 2004, 53(3): 883-887. doi: 10.7498/aps.53.883
    [20] 李俊杰, 郑伟涛, 卞海蛟, 吕宪义, 姜志刚, 白亦真, 金曾孙, 赵永年. 高温退火对非晶CNx薄膜场发射特性的影响. 物理学报, 2003, 52(7): 1797-1801. doi: 10.7498/aps.52.1797
计量
  • 文章访问数:  3654
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-05-05

碳纳米管薄膜场蒸发效应

  • 1. 兰州大学核科学与技术学院, 兰州 730000;
  • 2. 中国工程物理研究院电子工程研究所, 绵阳 621900;
  • 3. 东南大学电子科学与工程学院, 南京 210000
  • 通信作者: 姚泽恩, zeyao@lzu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11375155, 11375077)资助的课题.

摘要: 在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240300V)、场增强因子下降(83004200)、蒸发阈值场上升(1012.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回