搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响

张伟 石震武 霍大云 郭小祥 彭长四

引用本文:
Citation:

脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响

张伟, 石震武, 霍大云, 郭小祥, 彭长四

Effects of in-situ surface modification by pulsed laser on InAs/GaAs (001) quantum dot growth

Zhang Wei, Shi Zhen-Wu, Huo Da-Yun, Guo Xiao-Xiang, Peng Chang-Si
PDF
导出引用
  • 在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.
    InAs/GaAs quantum dots (QDs) have been extensively applied to high-performance optoelectronic devices due to their unique physical properties. In order to exploit the potential advantages of these QD-devices, it is necessary to control the QDs in density, uniformity and nucleation sites. In this work, a novel research of in-situ pulsed laser modifying InAs wetting layer is carried out to explore a new controllable method of growing InAs/GaAs(001) QDs based on a specially designed molecular beam epitaxy (MBE) system equipped with laser viewports. Firstly, a 300 nm GaAs buffer layer is grown on GaAs (001) substrate at 580 ℃ and the temperature decreases to 480 ℃ to deposit InAs. As soon as the amount of InAs deposition reaches 0.9 ML, a single laser pulse ( =355 nm, pulse duration ~ 10 ns) with an energy intensity of ~ 40.5 mJ/cm2 is in-situ introduced to irradiate the surface. Then, the sample is taken out and then its surface modification is immediately evaluated by atomic force microscope measurement. Atomic layer removal nano-holes elongated in the direction, and a surface density of ~2.0109 cm-2 are observed on the wetting layer. We attribute the morphology change to being due to laser-induced atom desorption. Because indium atoms should be easily desorbed away at substrate temperature of 480 ℃ during the laser irradiation, some vacancy defects are created. Then atoms adjacent to those defects would become weakly bounded, resulting in preferential desorption around the defect sites in sequence. Therefore, atomic layer removal is intensified by such a kind of chain effect and finally nano-holes are developed on the surface. In order to make clear how these nano holes of special kind influence the InAs/GaAs (001) QD growth, we perform another study by continuously depositing the InAs after the irradiation at the same thickness of 0.9 ML. It is found that when 1.7 ML InAs is deposited, QDs start to nucleate into some nano-holes and then are further deposited with an InAs coverage of 1.9 MLs, all the nano holes would be completely nucleated by QDs with a good uniformity, and there are no QDs in the remaining area. Such an effect of QD preferential nucleation in nano-holes could be explained by the following two causes. Firstly, adsorbed indium atoms tend to immigrate into nano-holes for lower surface energy induced by the concave surface curvature. The enhanced accumulation of Indium is in favor of the preferential nucleation of QDs in nano-holes. On the other hand, QD growth in areas outside the nano holes is depressed for indium desorption in pulsed laser irradiation process. In conclusion, our studies of in-situ laser-induced surface modification reported here provide a potential solution of controllable InAs/GaAs (001) QD growth.
      通信作者: 石震武, zwshi@suda.edu.cn;changsipeng@suda.edu.cn ; 彭长四, zwshi@suda.edu.cn;changsipeng@suda.edu.cn
    • 基金项目: 江苏高校优势学科建设工程资助项目, 科技部国际合作项目(批准号: 2013DFG12210)、 国家自然科学基金(批准号: 11504251, 51302179)、江苏省高校自然科学研究重大项目(批准号: 12KJA140001)和江苏省普通高校研究生科研创新计划项目(批准号: CXZZ13_0809)资助的课题.
      Corresponding author: Shi Zhen-Wu, zwshi@suda.edu.cn;changsipeng@suda.edu.cn ; Peng Chang-Si, zwshi@suda.edu.cn;changsipeng@suda.edu.cn
    • Funds: Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the International Cooperation Project by MOST, China (Grant No. 2013DFG12210) the National Natural Science Foundation of China (Grant Nos 11504251, 51302179), the Natural Science Research Project of Jiangsu Higher Education, China (Grant No. 12KJA140001) and the Post-graduate Innovation Project of Jiangsu Higher Education, China (Grant No. CXZZ13_0809).
    [1]

    Sugawara M, Usami M 2009 Nat. Photon. 3 30

    [2]

    Wu J, Chen S, Seeds A, Liu H 2015 J. Phys. D: Appl. Phys. 48 363001

    [3]

    Lee S J, Ku Z, Barve A, Montoya J, Jang W Y, Brueck S R J, Sundaram M, Reisinger A, Krishna S, Noh S K 2011 Nat. Commun. 2 286

    [4]

    Wu J, Li Z, Shao D, Manasreh M O, Kunets V P, Wang Z M, Salamo G J, Weaver B D 2009 Appl. Phys. Lett. 94 171102

    [5]

    Wang T, Zhang J J, Liu H 2015 Acta Phys. Sin. 64 204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 物理学报 64 204209]

    [6]

    Lan H, Ding Y 2012 Nano Today 7 94

    [7]

    Tommila J, Schramm A, Hakkarainen T V, Dumitrescu M, Guina M 2013 Nanotechnology 24 235204

    [8]

    Hakkarainen T V, Tommila J, Schramm A, Tukiainen A, Ahorinta R, Dumitrescu M, Guina M 2010 Appl. Phys. Lett. 97 173107

    [9]

    Itoh N, Stoneham A 2001 J. Phys.: Condens. Matter 13 489

    [10]

    Han B Y, Nakayama K, Weaver J H 1999 Phys. Rev. B 60 13846

    [11]

    Patella F, Nufris S, Arciprete F, Fanfoni M, Placidi E, Sgarlata A, Balzarotti A 2003 Phys. Rev. B 67 205308

    [12]

    Joyce P B, Krzyzewski T J 1998 Phys. Rev. B 58 15981

    [13]

    Krzyzewski T, Joyce P, Bell G, Jones T 2002 Phys. Rev. B 66 121307

    [14]

    Heller E J, Lagally M G 1992 Appl. Phys. Lett. 60 2675

    [15]

    Mashita M, Hiyama Y, Arai K, Koo B H, Yao T 2000 Jpn. J. Appl. Phys. 39 4435

    [16]

    Wankerl A, Emerson D T, Shealy J R 1998 Appl. Phys. Lett. 72 1614

    [17]

    Kaganovskii Y, Vladomirsky H, Rosenbluh M 2006 J. Appl. Phys. 100 044317

    [18]

    Zhang W, Huo D, Guo X, Rong C, Shi Z, Peng C 2016 Appl. Surf. Sci. 360 999

  • [1]

    Sugawara M, Usami M 2009 Nat. Photon. 3 30

    [2]

    Wu J, Chen S, Seeds A, Liu H 2015 J. Phys. D: Appl. Phys. 48 363001

    [3]

    Lee S J, Ku Z, Barve A, Montoya J, Jang W Y, Brueck S R J, Sundaram M, Reisinger A, Krishna S, Noh S K 2011 Nat. Commun. 2 286

    [4]

    Wu J, Li Z, Shao D, Manasreh M O, Kunets V P, Wang Z M, Salamo G J, Weaver B D 2009 Appl. Phys. Lett. 94 171102

    [5]

    Wang T, Zhang J J, Liu H 2015 Acta Phys. Sin. 64 204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 物理学报 64 204209]

    [6]

    Lan H, Ding Y 2012 Nano Today 7 94

    [7]

    Tommila J, Schramm A, Hakkarainen T V, Dumitrescu M, Guina M 2013 Nanotechnology 24 235204

    [8]

    Hakkarainen T V, Tommila J, Schramm A, Tukiainen A, Ahorinta R, Dumitrescu M, Guina M 2010 Appl. Phys. Lett. 97 173107

    [9]

    Itoh N, Stoneham A 2001 J. Phys.: Condens. Matter 13 489

    [10]

    Han B Y, Nakayama K, Weaver J H 1999 Phys. Rev. B 60 13846

    [11]

    Patella F, Nufris S, Arciprete F, Fanfoni M, Placidi E, Sgarlata A, Balzarotti A 2003 Phys. Rev. B 67 205308

    [12]

    Joyce P B, Krzyzewski T J 1998 Phys. Rev. B 58 15981

    [13]

    Krzyzewski T, Joyce P, Bell G, Jones T 2002 Phys. Rev. B 66 121307

    [14]

    Heller E J, Lagally M G 1992 Appl. Phys. Lett. 60 2675

    [15]

    Mashita M, Hiyama Y, Arai K, Koo B H, Yao T 2000 Jpn. J. Appl. Phys. 39 4435

    [16]

    Wankerl A, Emerson D T, Shealy J R 1998 Appl. Phys. Lett. 72 1614

    [17]

    Kaganovskii Y, Vladomirsky H, Rosenbluh M 2006 J. Appl. Phys. 100 044317

    [18]

    Zhang W, Huo D, Guo X, Rong C, Shi Z, Peng C 2016 Appl. Surf. Sci. 360 999

  • [1] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220829
    [2] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [3] 王海玲, 王霆, 张建军. GaAs (001)图形衬底上InAs量子点的定位生长. 物理学报, 2019, 68(11): 117301. doi: 10.7498/aps.68.20190317
    [4] 陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟. 激光模拟瞬态剂量率闩锁效应电流特征机制研究. 物理学报, 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [5] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨. 物理学报, 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [6] 张志伟, 赵翠兰, 孙宝权. InAs/GaAs量子点1.3 μm单光子发射特性. 物理学报, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [7] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究. 物理学报, 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [8] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究. 物理学报, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [9] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [10] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [11] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [12] 毕娟, 金光勇, 倪晓武, 张喜和, 姚志健. 532nm长脉冲激光致GaAs热分解损伤的半解析法分析. 物理学报, 2012, 61(24): 244209. doi: 10.7498/aps.61.244209
    [13] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响. 物理学报, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [14] 季海铭, 曹玉莲, 杨涛, 马文全, 曹青, 陈良惠. p型掺杂1.3μm InAs/GaAs量子点激光器的最大模式增益特性的研究. 物理学报, 2009, 58(3): 1896-1900. doi: 10.7498/aps.58.1896
    [15] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析. 物理学报, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [16] 胡良均, 陈涌海, 叶小玲, 王占国. Mn离子注入InAs/GaAs量子点结构材料的光电性质研究. 物理学报, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [17] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜. 物理学报, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [18] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理. 物理学报, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究. 物理学报, 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
    [20] 离子注入GaAs的脉冲激光退火. 物理学报, 1988, 37(5): 842-846. doi: 10.7498/aps.37.842
计量
  • 文章访问数:  3305
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-29
  • 修回日期:  2016-03-27
  • 刊出日期:  2016-06-05

脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响

    基金项目: 江苏高校优势学科建设工程资助项目, 科技部国际合作项目(批准号: 2013DFG12210)、 国家自然科学基金(批准号: 11504251, 51302179)、江苏省高校自然科学研究重大项目(批准号: 12KJA140001)和江苏省普通高校研究生科研创新计划项目(批准号: CXZZ13_0809)资助的课题.

摘要: 在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回