搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VO2薄膜Vis-NIR及NIR-MIR椭圆偏振光谱分析

王盼盼 章俞之 彭明栋 张云龙 吴岭南 曹韫真 宋力昕

引用本文:
Citation:

VO2薄膜Vis-NIR及NIR-MIR椭圆偏振光谱分析

王盼盼, 章俞之, 彭明栋, 张云龙, 吴岭南, 曹韫真, 宋力昕

Spectroscopic ellipsometry analysis of vanadium oxide film in Vis-NIR and NIR-MIR

Wang Pan-Pan, Zhang Yu-Zhi, Peng Ming-Dong, Zhang Yun-Long, Wu Ling-Nan, Cao Yun-Zhen, Song Li-Xin
PDF
导出引用
  • 采用射频磁控溅射在石英玻璃基底上反应溅射制备单斜相(M相) VO2薄膜. 利用V-VASE和IR-VASE椭圆偏振仪及变温附件分别在0.5-3.5 eV (350-2500 nm)和0.083-0.87 eV (1400-15000 nm)入射光能量范围内对相变前后的VO2薄膜进行光谱测试, 运用逐点拟合的方式, 并通过薄膜的吸收峰的特征, 在 0.5-3.5 eV范围内添加3个Lorentz 谐振子色散模型和0.083-0.87 eV范围内添加4个Gaussion振子模型对低温态半导体态的薄膜椭偏参数进行拟合, 再对高温金属态的薄膜添加7个 Lorentz谐振子色散模型对进行椭偏参数的拟合, 得到了较为理想的拟合结果. 结果发现: 半导体态的VO2薄膜的折射率在近红外-中红外基本保持在最大值3.27不变, 且消光系数k在此波段接近于零, 这是由于半导体态薄膜在可见光-近红外光范围内的吸收主要是自由载流子吸收, 而半导体态薄膜的d//轨道内的电子态密度较小. 高温金属态的VO2薄膜的折射率n在近红外-中红外波段具有明显的增大趋势, 且在入射光能量为0.45 eV时大于半导体态的折射率; 消光系数k在近红外波段迅速增大, 原因是 在0.5-1.62 eV范围内, 能带内的自由载流子浓度增加及电子在V3d能带内发生带内的跃迁吸收, 使k值迅速增加; 当能量小于0.5 eV时k值变化平缓, 是由于薄膜内自由载流子浓度和电子跃迁率趋于稳定所致.
    The monoclinic phase (M phase) VO2 film is prepared on quartz glass substrate by a model MSP-3200 three-target co-sputter coater with RF magnetron reactive sputtering. The optical properties in incident energy ranges of 0.5-3.5 eV (350-2500 nm) and 0.083-0.87 eV (1400-15000 nm) of VO2 film are investigated by spectroscopic ellipsometry with variable temperature attachment. The good results are determined point by point with the three Lorentz harmonic oscillator dispersion models in the range of 0.5-3.5 eV and four Gaussion harmonic oscillator dispersion models in the range of 0.083-0.87 eV in the state of semiconductor below the transition temperature, while adding seven Lorentz harmonic oscillator dispersion models in the high temperature metallic state film results in the characteristic absorption peaks. The results show that the refractive index of the semiconductor state of VO2 film is maintained at maximum 3.27 and extinction coefficient k is close to zero in the near infrared-mid infrared, which is due to the fact that the absorption of semiconductor thin film in the VIS-NIR range is derived from the free carrier absorption and d// orbital of the semiconductor film has less electron density. The refractive index n of high temperature metallic state VO2 film has an obviously increasing trend in the near infrared-the mid infrared which is larger than the refractive index of the semiconductor state when the incident light energy is 0.45 eV. Extinction coefficient k increases rapidly in the near infrared, which is because the density of free carrier increases in the range of 0.5-1.62 eV and electron transition absorption augments within the V3d band. When the incident energy less than 0.5 eV, k value changes gently in the film because free carrier concentration and flow rates are stable.
      通信作者: 章俞之, yzzhang@mail.sic.ac.cn
    • 基金项目: 国家重大科学研究项目(批准号: 2009CB939904)资助的课题.
      Corresponding author: Zhang Yu-Zhi, yzzhang@mail.sic.ac.cn
    • Funds: Project supported by the National Important Scientific Research Projects of China (Grant No. 2009CB939904).
    [1]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [2]

    Bugayev A A, Gupta M C 2003 Opt. Lett. 28 1463

    [3]

    Sen Y L, Wei T S 2008 Surf. Coat. Tech. 202 5641

    [4]

    Erominek H, Vincent D, Picard F 1993 Opt. Eng. 32 2092

    [5]

    Shen T F R, Lai M H, Yang T C K 2012 J. Taiwan Inst. Chem. Eng. 43 95

    [6]

    Dvorak O, Diers J 1992 Chem. Mater. 4 1074

    [7]

    Zilberberg K, Trost S, Meyer J 2011 Adv. Funct. Mater. 21 4776

    [8]

    Zhao Y, Chen C H, Pan X, Zhu Y H, Holtz M, Bernussi A, Fan Z Y 2013 J. Appl. Phys. 114 113509

    [9]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [10]

    Verleur H W, Barker A S, Berglund C N 1968 Phys. Rev. 172 788

    [11]

    Okazaki K, Sugai S, Muraoka Y, Hiroi Z 2006 Phys. Rev. B 73 165116

    [12]

    Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 L113

    [13]

    Paone A, Sanjines R, Jeanneret P, Schler As 2015 Sol. Energy 118 107

    [14]

    Chen L Y, Qian Y H 1995 Physics 24 75 (in Chinese) [陈良尧,钱佑华 1995 物理 24 75]

    [15]

    Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 1542 (in Chinese) [廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 1542]

    [16]

    Wang X D, Shen J, Wang S Z 2009 Acta Phys. Sin. 58 8027 (in Chinese) [王晓栋, 沈军, 王生钊 2009 物理学报 58 8027]

    [17]

    Wang X, Cao Y Z, Zhang Y Z, Yan L, Li Y 2015 Appl. Surf. Sci. 344 230

    [18]

    Zheng Y X, Chen L Y 2011 Modern Optics (Beijing: Electronic Industry Press) (in Chinese) [郑玉祥, 陈良尧 2011 近代光学 (北京: 电子工业出版社)]

    [19]

    Li W 2013 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [李崴 2013 硕士论文(上海: 复旦大学)]

    [20]

    Goodenough J B 1960 Phys. Rev. 117 1442

    [21]

    Goodenough J B 1971 J. Solid State Chem. 3 490

    [22]

    Goodenough J B 1971 Metallic Oxides, in: Progress in Solid State Chemistry (edited by Reiss H) (Oxford: Pergam on Press) pp145-399

    [23]

    Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S 1990 Phys. Rev. B 41 4993

    [24]

    Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京:科学出版社)第20页]

    [25]

    Volker E 2002 Ann. Phys. (Leipzig) 11 9

    [26]

    Blaauw C, Leenhouts F, Woude van der F, Sawatzky G A 1975 J. Phys. C: Solid State Phys. 8 459

    [27]

    Bermudez V M, Williams R T, Long J P, Reed R K, Klein P H 1992 Phys. Rev. B 45 9266

    [28]

    Goering E 1996 Ph. D. Dissertation (Augsburg: University of Augsburg)

    [29]

    Goering E, Schramme M, Muller O, Paulin H, Lemm M K, denBoer M L, Horn S 1997 Physica B 230 996

    [30]

    Goering E, Schramme M, Muller O, Barth R, Paulin H, Klemm M, denBoer M L, Horn S 1997 Phys. Rev. B 55 4225

  • [1]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [2]

    Bugayev A A, Gupta M C 2003 Opt. Lett. 28 1463

    [3]

    Sen Y L, Wei T S 2008 Surf. Coat. Tech. 202 5641

    [4]

    Erominek H, Vincent D, Picard F 1993 Opt. Eng. 32 2092

    [5]

    Shen T F R, Lai M H, Yang T C K 2012 J. Taiwan Inst. Chem. Eng. 43 95

    [6]

    Dvorak O, Diers J 1992 Chem. Mater. 4 1074

    [7]

    Zilberberg K, Trost S, Meyer J 2011 Adv. Funct. Mater. 21 4776

    [8]

    Zhao Y, Chen C H, Pan X, Zhu Y H, Holtz M, Bernussi A, Fan Z Y 2013 J. Appl. Phys. 114 113509

    [9]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [10]

    Verleur H W, Barker A S, Berglund C N 1968 Phys. Rev. 172 788

    [11]

    Okazaki K, Sugai S, Muraoka Y, Hiroi Z 2006 Phys. Rev. B 73 165116

    [12]

    Kakiuchida H, Jin P, Nakao S, Tazawa M 2007 Jpn. J. Appl. Phys. 46 L113

    [13]

    Paone A, Sanjines R, Jeanneret P, Schler As 2015 Sol. Energy 118 107

    [14]

    Chen L Y, Qian Y H 1995 Physics 24 75 (in Chinese) [陈良尧,钱佑华 1995 物理 24 75]

    [15]

    Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 1542 (in Chinese) [廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 1542]

    [16]

    Wang X D, Shen J, Wang S Z 2009 Acta Phys. Sin. 58 8027 (in Chinese) [王晓栋, 沈军, 王生钊 2009 物理学报 58 8027]

    [17]

    Wang X, Cao Y Z, Zhang Y Z, Yan L, Li Y 2015 Appl. Surf. Sci. 344 230

    [18]

    Zheng Y X, Chen L Y 2011 Modern Optics (Beijing: Electronic Industry Press) (in Chinese) [郑玉祥, 陈良尧 2011 近代光学 (北京: 电子工业出版社)]

    [19]

    Li W 2013 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [李崴 2013 硕士论文(上海: 复旦大学)]

    [20]

    Goodenough J B 1960 Phys. Rev. 117 1442

    [21]

    Goodenough J B 1971 J. Solid State Chem. 3 490

    [22]

    Goodenough J B 1971 Metallic Oxides, in: Progress in Solid State Chemistry (edited by Reiss H) (Oxford: Pergam on Press) pp145-399

    [23]

    Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S 1990 Phys. Rev. B 41 4993

    [24]

    Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京:科学出版社)第20页]

    [25]

    Volker E 2002 Ann. Phys. (Leipzig) 11 9

    [26]

    Blaauw C, Leenhouts F, Woude van der F, Sawatzky G A 1975 J. Phys. C: Solid State Phys. 8 459

    [27]

    Bermudez V M, Williams R T, Long J P, Reed R K, Klein P H 1992 Phys. Rev. B 45 9266

    [28]

    Goering E 1996 Ph. D. Dissertation (Augsburg: University of Augsburg)

    [29]

    Goering E, Schramme M, Muller O, Paulin H, Lemm M K, denBoer M L, Horn S 1997 Physica B 230 996

    [30]

    Goering E, Schramme M, Muller O, Barth R, Paulin H, Klemm M, denBoer M L, Horn S 1997 Phys. Rev. B 55 4225

  • [1] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [2] 李江, 唐敬友, 裴旺, 魏贤华, 黄峰. 椭偏精确测定透明衬底上吸收薄膜的厚度及光学常数. 物理学报, 2015, 64(11): 110702. doi: 10.7498/aps.64.110702
    [3] 杨伟, 梁继然, 刘剑, 姬扬. 在半导体-金属相变温度附近氧化钒薄膜光学性质的异常变动. 物理学报, 2014, 63(10): 107104. doi: 10.7498/aps.63.107104
    [4] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [5] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性. 物理学报, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [6] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [7] 唐华杰, 张晋敏, 金浩, 邵飞, 胡维前, 谢泉. 溅射功率对金属锰膜光学性质的影响. 物理学报, 2013, 62(24): 247803. doi: 10.7498/aps.62.247803
    [8] 于天燕, 秦杨, 刘定权. 沉积温度对硫化锌(ZnS)薄膜的结晶和光学特性影响研究. 物理学报, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [9] 武斌, 胡明, 后顺保, 吕志军, 高旺, 梁继然. 快速热处理制备相变氧化钒薄膜及其特性研究. 物理学报, 2012, 61(18): 188101. doi: 10.7498/aps.61.188101
    [10] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜. 物理学报, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [11] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 周毅, 吴国松, 代伟, 李洪波, 汪爱英. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度. 物理学报, 2010, 59(4): 2356-2363. doi: 10.7498/aps.59.2356
    [14] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [15] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [16] 苏伟涛, 李 斌, 刘定权, 张凤山. 氟化铒薄膜晶体结构与红外光学性能的关系. 物理学报, 2007, 56(5): 2541-2546. doi: 10.7498/aps.56.2541
    [17] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [18] 马建华, 孟祥建, 孙璟兰, 胡志高, 褚君浩. 化学溶液法制备的Bi3.25La0.75Ti3O12和 Bi3.25Nd0.75Ti3O12薄膜的光学特性. 物理学报, 2005, 54(8): 3900-3904. doi: 10.7498/aps.54.3900
    [19] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [20] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙. 氧化钒薄膜微观结构的研究. 物理学报, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
计量
  • 文章访问数:  2866
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-04
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-06-05

VO2薄膜Vis-NIR及NIR-MIR椭圆偏振光谱分析

  • 1. 中国科学院上海硅酸盐研究所, 中国科学院特种无机涂层重点实验室, 上海 200050
  • 通信作者: 章俞之, yzzhang@mail.sic.ac.cn
    基金项目: 国家重大科学研究项目(批准号: 2009CB939904)资助的课题.

摘要: 采用射频磁控溅射在石英玻璃基底上反应溅射制备单斜相(M相) VO2薄膜. 利用V-VASE和IR-VASE椭圆偏振仪及变温附件分别在0.5-3.5 eV (350-2500 nm)和0.083-0.87 eV (1400-15000 nm)入射光能量范围内对相变前后的VO2薄膜进行光谱测试, 运用逐点拟合的方式, 并通过薄膜的吸收峰的特征, 在 0.5-3.5 eV范围内添加3个Lorentz 谐振子色散模型和0.083-0.87 eV范围内添加4个Gaussion振子模型对低温态半导体态的薄膜椭偏参数进行拟合, 再对高温金属态的薄膜添加7个 Lorentz谐振子色散模型对进行椭偏参数的拟合, 得到了较为理想的拟合结果. 结果发现: 半导体态的VO2薄膜的折射率在近红外-中红外基本保持在最大值3.27不变, 且消光系数k在此波段接近于零, 这是由于半导体态薄膜在可见光-近红外光范围内的吸收主要是自由载流子吸收, 而半导体态薄膜的d//轨道内的电子态密度较小. 高温金属态的VO2薄膜的折射率n在近红外-中红外波段具有明显的增大趋势, 且在入射光能量为0.45 eV时大于半导体态的折射率; 消光系数k在近红外波段迅速增大, 原因是 在0.5-1.62 eV范围内, 能带内的自由载流子浓度增加及电子在V3d能带内发生带内的跃迁吸收, 使k值迅速增加; 当能量小于0.5 eV时k值变化平缓, 是由于薄膜内自由载流子浓度和电子跃迁率趋于稳定所致.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回