搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响

曾永辉 江五贵 Qin Qing-Hua

引用本文:
Citation:

螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响

曾永辉, 江五贵, Qin Qing-Hua

Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes

Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua
PDF
导出引用
  • 运用分子动力学方法模拟了锯齿型双壁碳纳米管体系的振荡行为, 其中旋转的内管施加了不同大小的螺旋上升长度. 不同于以前关于扶手椅型碳纳米管的工作(Zeng Y H, et al. 2016 Nanotechnology 27 95705), 锯齿型的内管在施加了不同大小的螺旋上升长度之后, 其管壁结构会产生畸变或缺陷. 模拟过程中, 锯齿型内管在施加一定的旋转速度以后保持自由, 而固定的外管为无任何缺陷的理想锯齿型碳纳米管. 分子动力学模拟结果显示锯齿型内管的轴向振荡行为与内管施加的螺旋上升长度密切相关. 内管的振荡频率随着内管螺旋上升长度的增加而增加. 但当内管的螺旋上升长度较大时, 由于螺旋上升所引起的内管缺陷结构造成整个内管的破裂, 从而导致其无法进行稳定的轴向振荡. 模拟结果还显示, 对于无螺旋上升的理想锯齿型碳管, 虽然其轴向振荡效果非常微弱, 但却可以作为一种具有恒定旋转频率的旋转致动器. 此外, 对螺旋上升长度为0.5 nm的内管在不同温度下的振荡性能进行了模拟分析, 结果表明内管振荡的幅度随温度的升高而相应地增加, 但当温度超过一定的临界值后, 内管不能保持稳定的振荡.
    Oscillation behaviors of oscillators consisting of defect-free multi-walled carbon nanotubes (MWCNTs) have been extensively studied, owing to the operating frequency of the nanotubes being able to reach up to gigahertz. However, there exist defects in most carbon nanotubes, which will affect the friction force between the walls of nanotubes. It is therefore critical to investigate the oscillation characteristics of the MWCNT-based oscillators containing a distorted or defective rotating tube, for the design of MWCNTs-based oscillators. Unlike the case in the armchair carbon nanotubes (Zeng Y H, et al. 2016 Nanotechnology 27 95705), the existence of the helical rise in the zigzag-type nanotubes can induce aberrant or defective shell structures. In this paper, the oscillatory behaviors of zigzag@zigzag double-wall carbon nanotubes containing a rotating inner tube with different helical rises are investigated using the molecular dynamics method. In all the simulation modes, the adaptive intermolecular reactive empirical bond order potential is used in this work for both the covalent bond between carbon atoms and the long-range van der Waals interaction of the force field. The perfect zigzag outer tube is assumed to be fixed while the zigzag inner tube is free after it has been rotated by a torque. At the beginning of the simulation, the whole system is heat bathed at a temperature around 300 K for 60 ps, to gently increase the whole system temperature to around 300 K after the energy minimization. The total number of particles, the system volume, and the absolute temperature are kept unchanged for 60 ps. Then we apply a torque of 30 eV to the inner tube under the constant temperature. After the rotation frequency of the inner tube reaches around 300 GHz, we remove the torque of inner tube and let the whole system be under a constant energy condition. The time steps for all simulations are all chosen to be 1 fs. The total time for the simulation is 3000 ps. It is found that the oscillatory behavior of the inner tube is dependent on the helical rise. The simulation results show that the oscillation frequency of the inner tube increases with the length of helical rise increasing. However, as the helical rise is further increased, the oscillation becomes awful because of the breakage of the inner tube with defects. Moreover, the zigzag@zigzag double-wall carbon nanotubes without any helical rise may be used as an ideal rotating actuator because the inner tube can rotate at an approximately constant rotational frequency. The influence of the system temperature on the oscillatory behavior of inner tube with a helical rise of 0.5 nm is also investigated. The results show that the oscillation amplitude of the inner tube increases with temperature increasing, but the oscillation of the inner tube is extremely unstable if the temperature is higher than a critical value.
      通信作者: 江五贵, jiangwugui@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11162014,11372126)资助的课题.
      Corresponding author: Jiang Wu-Gui, jiangwugui@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11162014, 11372126).
    [1]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Nano Lett. 6 430

    [2]

    Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanos. 5 1403

    [3]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [4]

    Cumings J, Zettl A 2000 Science 289 602

    [5]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [6]

    Fennimore A, Yuzvinsky T, Han W, Fuhrer M, Cumings J, Zettl A 2003 Nature 424 408

    [7]

    Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558

    [8]

    Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831

    [9]

    Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409

    [10]

    Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501

    [11]

    Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652

    [12]

    Peng D F, Jiang W G, Peng C 2012 Acta Phys. Sin. 61 146102 (in Chinese) [彭德锋, 江五贵, 彭川 2012 物理学报 61 146102]

    [13]

    Zhang L J, Hu H F, Wang Z Y, Chen N T, Xie N, Lin B B 2011 Acta Phys. Sin. 60 077209 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 陈南庭, 谢能, 林冰冰 2011 物理学报 60 077209]

    [14]

    Liu P, Gao H J, Zhang Y W 2008 Appl. Phys. Lett. 93 083107

    [15]

    Li J 2011 Adv. Mater. Res. 308 584

    [16]

    Zeng Y H, Jiang W G, Qin Q H 2016 Nanotechnology 27 095705

    [17]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O 2004 Nanotechnology 15 184

    [18]

    Iijima S 1993 Mat. Sci. Eng. B 19 172

    [19]

    Brenner D W 1992 Phys. Rev. B 46 9458

    [20]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. -Condens. Mat. 14 783

    [21]

    Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832

    [22]

    Doll J D, McDowell H K 1982 J. Chem. Phys. 77 479

    [23]

    Guo Z, Chang T, Guo X, Gao H 2011 Phys. Rev. Lett. 107 105502

    [24]

    Guo Z, Chang T, Guo X, Gao H 2012 J. Mech. Phys. Solids 60 1676

    [25]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 1058

    [26]

    Guo W L, Zhong W Y, Dai Y T, Li S 2005 Phys. Rev. B 72 075409

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Nanotechnology 20 495503

  • [1]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Nano Lett. 6 430

    [2]

    Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanos. 5 1403

    [3]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [4]

    Cumings J, Zettl A 2000 Science 289 602

    [5]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [6]

    Fennimore A, Yuzvinsky T, Han W, Fuhrer M, Cumings J, Zettl A 2003 Nature 424 408

    [7]

    Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558

    [8]

    Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831

    [9]

    Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409

    [10]

    Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501

    [11]

    Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652

    [12]

    Peng D F, Jiang W G, Peng C 2012 Acta Phys. Sin. 61 146102 (in Chinese) [彭德锋, 江五贵, 彭川 2012 物理学报 61 146102]

    [13]

    Zhang L J, Hu H F, Wang Z Y, Chen N T, Xie N, Lin B B 2011 Acta Phys. Sin. 60 077209 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 陈南庭, 谢能, 林冰冰 2011 物理学报 60 077209]

    [14]

    Liu P, Gao H J, Zhang Y W 2008 Appl. Phys. Lett. 93 083107

    [15]

    Li J 2011 Adv. Mater. Res. 308 584

    [16]

    Zeng Y H, Jiang W G, Qin Q H 2016 Nanotechnology 27 095705

    [17]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O 2004 Nanotechnology 15 184

    [18]

    Iijima S 1993 Mat. Sci. Eng. B 19 172

    [19]

    Brenner D W 1992 Phys. Rev. B 46 9458

    [20]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. -Condens. Mat. 14 783

    [21]

    Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832

    [22]

    Doll J D, McDowell H K 1982 J. Chem. Phys. 77 479

    [23]

    Guo Z, Chang T, Guo X, Gao H 2011 Phys. Rev. Lett. 107 105502

    [24]

    Guo Z, Chang T, Guo X, Gao H 2012 J. Mech. Phys. Solids 60 1676

    [25]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 1058

    [26]

    Guo W L, Zhong W Y, Dai Y T, Li S 2005 Phys. Rev. B 72 075409

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Nanotechnology 20 495503

  • [1] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [3] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟. 物理学报, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [4] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [5] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [6] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [7] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [8] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响. 物理学报, 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [9] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [10] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [12] 杜玉光, 张凯旺, 彭向阳, 金福报, 钟建新. 碳纳米管内Ni纳米线的螺旋度与热稳定性研究. 物理学报, 2012, 61(17): 176102. doi: 10.7498/aps.61.176102
    [13] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [14] 唐冬妮, 唐国宁. 无扩散功能的缺陷对螺旋波动力学行为的影响. 物理学报, 2010, 59(4): 2319-2325. doi: 10.7498/aps.59.2319
    [15] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [16] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [17] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [18] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  3284
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-04-28
  • 刊出日期:  2016-07-05

螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响

  • 1. 南昌航空大学航空制造工程学院, 南昌 330063;
  • 2. Research School of Engineering, the Australian National University, Acton ACT 2601, Australia
  • 通信作者: 江五贵, jiangwugui@nchu.edu.cn
    基金项目: 国家自然科学基金(批准号:11162014,11372126)资助的课题.

摘要: 运用分子动力学方法模拟了锯齿型双壁碳纳米管体系的振荡行为, 其中旋转的内管施加了不同大小的螺旋上升长度. 不同于以前关于扶手椅型碳纳米管的工作(Zeng Y H, et al. 2016 Nanotechnology 27 95705), 锯齿型的内管在施加了不同大小的螺旋上升长度之后, 其管壁结构会产生畸变或缺陷. 模拟过程中, 锯齿型内管在施加一定的旋转速度以后保持自由, 而固定的外管为无任何缺陷的理想锯齿型碳纳米管. 分子动力学模拟结果显示锯齿型内管的轴向振荡行为与内管施加的螺旋上升长度密切相关. 内管的振荡频率随着内管螺旋上升长度的增加而增加. 但当内管的螺旋上升长度较大时, 由于螺旋上升所引起的内管缺陷结构造成整个内管的破裂, 从而导致其无法进行稳定的轴向振荡. 模拟结果还显示, 对于无螺旋上升的理想锯齿型碳管, 虽然其轴向振荡效果非常微弱, 但却可以作为一种具有恒定旋转频率的旋转致动器. 此外, 对螺旋上升长度为0.5 nm的内管在不同温度下的振荡性能进行了模拟分析, 结果表明内管振荡的幅度随温度的升高而相应地增加, 但当温度超过一定的临界值后, 内管不能保持稳定的振荡.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回