搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐照聚乙烯/碳纳米管拉伸变形机理

马国亮 杨剑群 李兴冀 刘超铭 侯春风

引用本文:
Citation:

电子辐照聚乙烯/碳纳米管拉伸变形机理

马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风

Tensile deformation mechanism of PE/CNTs irradiated by electrons

Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng
PDF
导出引用
  • 利用X射线散射对纯聚合物材料,包括聚乙烯拉伸行为及变形机理的研究与日俱增. 本文选择低密度聚乙烯/多壁碳纳米管(LDPE/2% MWCNTs)复合材料为实验材料,基于同步辐射小角散射的测试平台,对电子辐照的LDPE/MWCNTs复合材料拉伸过程中的X射线小角散射(SAXS)和广角衍射(WAXD)信号进行了原位测试分析,重点分析了低能电子辐照后复合材料拉伸变形过程中微观结构的演化规律. 研究结果表明,低能电子辐照会导致复合材料屈服强度显著提高,而断裂延伸率降低;电子辐照可制约LDPE/MWCNTs复合材料基体变形,从而使应变诱发的片晶破碎过程受到抑制,并且较高注量电子辐照可强烈抑制晶体转动和新晶体形成;在拉伸变形过程中,主要强化机理包括辐照引起MWCNTs强化的增强(界面强化)和辐照对LDPE基体产生交联导致的强化效应.
    Polyethylene/carbon nanotube (PE/CNT) composites with high hydrogen content as a kind of structural material for space radiation shielding have extensive potential applications in future aerospace field due to their unusual radiation shielding, lightweight, and easy processing. In the space irradiation environment, the composites are sensitive to radiation damage, which changes their microstructures, directly affecting their mechanical performances and shielding effectiveness. Low energy electrons (200 keV) are important radiation environmental factors. Effects and mechanisms for mechanical damage of PE/CNTs composites induced by low energy electrons are studied, which has important academic value and practical significance. Previous research mainly involves the qualitative evaluations of the changes in the mechanical performance index of polymer nanocomposites. The inner relationship between microstructural change induced by radiation and mechanical behavior of the nanocomposites, especially in the PE/CNTs composites has not been studied in depth so far. In this paper, low-density polyethylene (LDPE)/ multi-walled carbon nanotube (MWCNT) composites are chosen as a research object. Based on 110 keV electron irradiation, tensile deformation mechanism of the LDPE/MWCNT composite is studied. The synchrotron radiation X-ray small angle scattering (SAXS) and wide angle diffraction (WAXD) are used to reveal the real-time microstructure evolutions of the nanocomposites after and before irradiation in the process of stretching. Tensile deformation mechanisms of LDPE/MWCNT composite after and before the 110 keV electron irradiation are revealed. Experimental results show that the tensile deformation behavior for the irradiated LDPE by 110 keV electrons is different from that for unirradiated sample. The electron irradiation increases the tensile strength of the LDPE/MWCNT composite and reduces the elongation at break. Moreover, with increasing the irradiation fluence, the tensile strength and the elongation at break of the LDPE/MWCNT composite significantly increases and decreases, respectively. The electron irradiation could hinder the deformations of the LDPE matrix including crystalline case and amorphous case, constrain the fragmentation of original lamellae, the directional arrangement of the MWCNTs, the formation of new crystal and the rotation of lamellae, especially in higher irradiation fluence. During tensile deformation, the main strengthening mechanism for the irradiated LDPE/MWCNT composites by the 110 keV electrons is crosslinking strengthening effect in LDPE matrix. On the other hand, enhanced interaction (mainly interface strengthening) between MWCNTs and LDPE matrix induced by irradiation is attributed to the main strengthening mechanism for the irradiated LDPE/MWCNT composites. These results could provide a theoretical basis and technical support for the reasonable design and successful application of CNT-based polymer composites as structural material for space radiation shielding.
      通信作者: 李兴冀, mgl0721@163.com
    • 基金项目: 中国博士后科学基金(批准号:2014M560256)和国家自然科学基金(批准号:51503053)资助的课题.
      Corresponding author: Li Xing-Ji, mgl0721@163.com
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2014M560256), and the National Natural Science Foundation of China (Grant No. 51503053).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Martinez A, Galano A 2010 J. Phys. Chem. C 114 8184

    [3]

    Jung C H, Lee D H, Hwang I T, Im D S, Shin J H, Kang P H, Choi J H 2013 J. Nucl. Mater. 438 41

    [4]

    Kumar A P, Depan D, Tomer N S, Singh R P 2009 Prog. Polym. Sci. 34 479

    [5]

    Li Z, Nambiar S, Zhang W, Yeow J T W 2013 Mater. Lett. 108 79

    [6]

    Njuguna J, Pielichowski K 2004 Adv. Eng. Mater. 6 204

    [7]

    Nielsen K L C, Hill D J T, Watson K A, Connell J W, Ikeda S, Kudo H, Whittaker A K 2008 Polym. Degrad. Stab. 93 169.

    [8]

    Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2011 Compos. Sci. Technol. 71 281

    [9]

    Rama Sreekanth P S, Naresh Kumar N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390

    [10]

    Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2012 Carbon 50 2442

    [11]

    Campo N, Visco A M 2012 Int. J. Polym. Anal. Charact. 17 144

    [12]

    Dintcheva N T, La Mantia F P, Malatesta V 2009 Polym. Degrad. Stab. 94 162

    [13]

    Sreekanth P S R, Kumar N N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390

    [14]

    Castell P, Martinez-Morlanes M J, Alonso P J, Martinez M T, Puertolas J A 2013 J. Mater. Sci. 48 6549

    [15]

    Rui E R, Yang J Q, Li X J, Liu C M, Tian F, Gao F 2014 J. Appl. Polym. Sci. 131 40269

    [16]

    Liu Y P, Cui K P, Tian N, Zhou W Q, Meng L P, Li L B, Ma Z, Wang X L 2012 Macromolecules 45 2764

    [17]

    Ma Z, Shao C G, Wang X, Zhao B J, Li X Y, An H N, Yan T Z, Li Z M, Li L B 2009 Polymer 50 2706

    [18]

    Tang Y J, Jiang Z Y, Men Y F, An L J, Enderle H F, Lilge D, Roth S V, Gehrke R, Rieger J 2007 Polymer 48 5125

    [19]

    Schneider K, Zafeiropoulos N E, Stamm M 2009 Adv. Eng. Mater. 11 502

    [20]

    Yang J Q, Li X J, Ma G L, Liu C M, Zou M N 2015 Acta Phys. Sin. 64 136401 (in Chinese) [杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠 2015 物理学报 64 136401]

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Martinez A, Galano A 2010 J. Phys. Chem. C 114 8184

    [3]

    Jung C H, Lee D H, Hwang I T, Im D S, Shin J H, Kang P H, Choi J H 2013 J. Nucl. Mater. 438 41

    [4]

    Kumar A P, Depan D, Tomer N S, Singh R P 2009 Prog. Polym. Sci. 34 479

    [5]

    Li Z, Nambiar S, Zhang W, Yeow J T W 2013 Mater. Lett. 108 79

    [6]

    Njuguna J, Pielichowski K 2004 Adv. Eng. Mater. 6 204

    [7]

    Nielsen K L C, Hill D J T, Watson K A, Connell J W, Ikeda S, Kudo H, Whittaker A K 2008 Polym. Degrad. Stab. 93 169.

    [8]

    Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2011 Compos. Sci. Technol. 71 281

    [9]

    Rama Sreekanth P S, Naresh Kumar N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390

    [10]

    Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2012 Carbon 50 2442

    [11]

    Campo N, Visco A M 2012 Int. J. Polym. Anal. Charact. 17 144

    [12]

    Dintcheva N T, La Mantia F P, Malatesta V 2009 Polym. Degrad. Stab. 94 162

    [13]

    Sreekanth P S R, Kumar N N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390

    [14]

    Castell P, Martinez-Morlanes M J, Alonso P J, Martinez M T, Puertolas J A 2013 J. Mater. Sci. 48 6549

    [15]

    Rui E R, Yang J Q, Li X J, Liu C M, Tian F, Gao F 2014 J. Appl. Polym. Sci. 131 40269

    [16]

    Liu Y P, Cui K P, Tian N, Zhou W Q, Meng L P, Li L B, Ma Z, Wang X L 2012 Macromolecules 45 2764

    [17]

    Ma Z, Shao C G, Wang X, Zhao B J, Li X Y, An H N, Yan T Z, Li Z M, Li L B 2009 Polymer 50 2706

    [18]

    Tang Y J, Jiang Z Y, Men Y F, An L J, Enderle H F, Lilge D, Roth S V, Gehrke R, Rieger J 2007 Polymer 48 5125

    [19]

    Schneider K, Zafeiropoulos N E, Stamm M 2009 Adv. Eng. Mater. 11 502

    [20]

    Yang J Q, Li X J, Ma G L, Liu C M, Zou M N 2015 Acta Phys. Sin. 64 136401 (in Chinese) [杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠 2015 物理学报 64 136401]

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221479
    [2] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [3] 张延清, 齐春华, 周佳明, 刘超铭, 马国亮, 蔡勖升, 王天琦, 霍明学. 倒置四结(IMM4J)太阳电池中InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池高能电子辐照退火效应. 物理学报, 2020, 69(22): 228802. doi: 10.7498/aps.69.20200557
    [4] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [5] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [6] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究. 物理学报, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [7] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜. 空间用倒装三结太阳能电池及其抗辐射性能研究. 物理学报, 2017, 66(18): 188801. doi: 10.7498/aps.66.188801
    [8] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [9] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [10] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [11] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [12] 全荣辉, 韩建伟, 张振龙. 电子辐照下聚合物介质内部放电模型研究. 物理学报, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [13] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正. 物理学报, 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [14] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [15] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [16] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [17] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究. 物理学报, 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [18] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [19] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  3510
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-06-06
  • 刊出日期:  2016-09-05

电子辐照聚乙烯/碳纳米管拉伸变形机理

  • 1. 哈尔滨工业大学理学院, 哈尔滨 150001;
  • 2. 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
  • 通信作者: 李兴冀, mgl0721@163.com
    基金项目: 中国博士后科学基金(批准号:2014M560256)和国家自然科学基金(批准号:51503053)资助的课题.

摘要: 利用X射线散射对纯聚合物材料,包括聚乙烯拉伸行为及变形机理的研究与日俱增. 本文选择低密度聚乙烯/多壁碳纳米管(LDPE/2% MWCNTs)复合材料为实验材料,基于同步辐射小角散射的测试平台,对电子辐照的LDPE/MWCNTs复合材料拉伸过程中的X射线小角散射(SAXS)和广角衍射(WAXD)信号进行了原位测试分析,重点分析了低能电子辐照后复合材料拉伸变形过程中微观结构的演化规律. 研究结果表明,低能电子辐照会导致复合材料屈服强度显著提高,而断裂延伸率降低;电子辐照可制约LDPE/MWCNTs复合材料基体变形,从而使应变诱发的片晶破碎过程受到抑制,并且较高注量电子辐照可强烈抑制晶体转动和新晶体形成;在拉伸变形过程中,主要强化机理包括辐照引起MWCNTs强化的增强(界面强化)和辐照对LDPE基体产生交联导致的强化效应.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回