搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同原子在飞秒强激光场中的里德堡态激发和双电离

赵磊 张琦 董敬伟 吕航 徐海峰

引用本文:
Citation:

不同原子在飞秒强激光场中的里德堡态激发和双电离

赵磊, 张琦, 董敬伟, 吕航, 徐海峰

Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field

Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng
PDF
导出引用
  • 利用质量分辨的脉冲电场电离方法结合飞行时间质谱,系统地研究了He,Ar和Xe原子在800 nm飞秒强激光场中的里德堡态激发过程,并将其与非序列双电离过程进行了比较,探讨了激发与非序列双电离过程的区别,以及不同原子里德堡态激发过程的规律性变化.研究结果有助于深入了解强激光场中原子里德堡态激发的物理机理.
    We experimentally investigate the Rydberg state excitations (RSEs) of noble gas atoms, He, Ar and Xe, in an 800-nm 50-fs strong laser field, by using the mass resolved pulsed electric field ionization method combined with the time-of-flight mass spectrometer. We measure the yields of the atomic RSE at different laser intensities and ellipticities, and compare the results with those of the nonsequential double ionization (NSDI) in strong laser fields. Our study shows that like that of NSDI, the yield of the atomic RSE increases as the atomic number increases, i.e., RSE yield trend is He Ar Xe. On the other hand, for any of the atoms, the probability of NSDI is lower than that of total RSE at the same laser intensity, which can be understood as that the yield of high energy electrons (for NSDI) is less than that of low energy electrons that can be captured into the Rydberg states. Additionally, our results show that the RSE yield strongly depends on the laser ellipticity, which is completely suppressed by a circularly polarized laser field. The dependence of RSE on laser ellipticity turns weaker as the atomic number increases, and is weaker than that of NSDI for any of the atoms. It is indicated that the atomic RSE in strong laser field can be attibuted to the capture of the low energy electrons after tunneling ionization into Rydberg states by the Coulomb potential at the end of the laser pulse.
      通信作者: 吕航, Lvhang0811@jlu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922200)和国家自然科学基金(批准号:11534004,U1532138,11274140)资助的课题.
      Corresponding author: Lü Hang, Lvhang0811@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11534004, U1532138, 11274140).
    [1]

    Jin C, Bertrand J B, Lucchese R R, W Orner H J, Corkum P B, Villeneuve D M, Le A, Lin C D 2012Phys. Rev. A 85 13405

    [2]

    Tudorovskaya M, Lein M 2011Phys. Rev. A 84 13430

    [3]

    Cao W J, Cheng C Z, Zhou X X 2011Acta Phys. Sin. 60 054210(in Chinese)[曹卫军, 成春芝, 周效信2011物理学报60 054210]

    [4]

    Li M, Geng J, Liu H, Deng Y, Wu C, Peng L, Gong Q, Liu Y 2014Phys. Rev. Lett. 112 113002

    [5]

    Liao Q, Lu P, Lan P, Cao W, Li Y 2008Phys. Rev. A 77 13408

    [6]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002Adv. Atom., Molec., Opt. Phys. 48 35

    [7]

    Lohr A, Kleber M, Kopold R, Becker W 1997Phys. Rev. A 55 R4003

    [8]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys. Sin. 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015物理学报64 143201]

    [9]

    Jia X Y, Fan D H, Li W D, Chen J 2013Chin. Phys. B 1 13301

    [10]

    Ishikawa T, Tong X M, Toshima N 2010Phys. Rev. A 82 33411

    [11]

    Mauger F, Chandre C, Uzer A T 2010Phys. Rev. Lett. 104 43005

    [12]

    Hao X, Wang G, Jia X, Li W 2009Phys. Rev. A 80 23408

    [13]

    Cornaggia C, Hering P 2000Phys. Rev. A 62 23403

    [14]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [15]

    Talebpoury A, Chien C, Liangz Y, Larochelle S, Chin S L 1997J. Phys. B:At. Mol. Opt. Phys. 30 1721

    [16]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [17]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner A W 2008Phys. Rev. Lett. 101 233001

    [18]

    Wang B B, Li X F, Fu P M, Chen J, Liu J 2006Chin. Phys. Lett. 23 2729

    [19]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009Nature 461 1261

    [20]

    Maher-Mcwilliams C, Douglas P, Barker P F 2012Nat. Photon. 6 386

    [21]

    L H, Zhang J F, Zuo W L, Xu H F, Jin M X, Ding D J 2015Chin. Phys. B 24 063303

    [22]

    Mckenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson N G, Gaire B, Carnes K D, Esry B D, Ben-Itzhak I 2011Phys. Rev. A 84 43425

    [23]

    Wu J, Vredenborg A, Ulrich B, Schmidt L P H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Do Rner R 2011Phys. Rev. Lett. 107 43003

    [24]

    Nubbemeyer T, Eichmann U, Wsandner 2009J. Phys. B:At. Mol. Opt. Phys. 42 134010

    [25]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009Phys. Rev. Lett. 102 113002

    [26]

    Volkova E A, Popov A M, Tikhonova O V 2011Sov. Phys. JETP 113 394

    [27]

    Popov A M, Tikhonova O V, Volkova E A 2010Laser Phys. 20 1028

    [28]

    L H, Zuo W, Zhao L, Xu H, Jin M, Ding D, Hu S, Chen J 2016Phys. Rev. A 93 33415

    [29]

    Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013New J. Phys. 15 13001

    [30]

    Huang K, Xia Q, Fu L 2013Phys. Rev. A 87 33415

    [31]

    Baer T 1989Annu. Rev. Phys. Chern. 40 637

    [32]

    Ammosov M V, Delone N B, Krainov V P 1986Zh. Eksp. Teor. Fiz. 91 2008

    [33]

    Larochelle S, Talebpoury A, Chin S L 1998J. Phys. B:At. Mol. Opt. Phys. 31 1201

    [34]

    Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [35]

    Brabec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [36]

    Santra R, Gordon A 2006Phys. Rev. Lett. 96 73906

    [37]

    Shvetsov-Shilovskia N I, Goreslavskia S P, Popruzhenkoa S V, Beckerb W 2009Laser Phys. 19 1550

    [38]

    Dimitrovski D, Maurer J, Stapelfeldt H, Madsen L B 2014Phys. Rev. Lett. 113 103005

    [39]

    Sun X, Li M, Ye D, Xin G, Fu L, Xie X, Deng Y, Wu C, Liu J, Gong Q, Liu Y 2014Phys. Rev. Lett. 113 103001

  • [1]

    Jin C, Bertrand J B, Lucchese R R, W Orner H J, Corkum P B, Villeneuve D M, Le A, Lin C D 2012Phys. Rev. A 85 13405

    [2]

    Tudorovskaya M, Lein M 2011Phys. Rev. A 84 13430

    [3]

    Cao W J, Cheng C Z, Zhou X X 2011Acta Phys. Sin. 60 054210(in Chinese)[曹卫军, 成春芝, 周效信2011物理学报60 054210]

    [4]

    Li M, Geng J, Liu H, Deng Y, Wu C, Peng L, Gong Q, Liu Y 2014Phys. Rev. Lett. 112 113002

    [5]

    Liao Q, Lu P, Lan P, Cao W, Li Y 2008Phys. Rev. A 77 13408

    [6]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002Adv. Atom., Molec., Opt. Phys. 48 35

    [7]

    Lohr A, Kleber M, Kopold R, Becker W 1997Phys. Rev. A 55 R4003

    [8]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys. Sin. 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015物理学报64 143201]

    [9]

    Jia X Y, Fan D H, Li W D, Chen J 2013Chin. Phys. B 1 13301

    [10]

    Ishikawa T, Tong X M, Toshima N 2010Phys. Rev. A 82 33411

    [11]

    Mauger F, Chandre C, Uzer A T 2010Phys. Rev. Lett. 104 43005

    [12]

    Hao X, Wang G, Jia X, Li W 2009Phys. Rev. A 80 23408

    [13]

    Cornaggia C, Hering P 2000Phys. Rev. A 62 23403

    [14]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [15]

    Talebpoury A, Chien C, Liangz Y, Larochelle S, Chin S L 1997J. Phys. B:At. Mol. Opt. Phys. 30 1721

    [16]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [17]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner A W 2008Phys. Rev. Lett. 101 233001

    [18]

    Wang B B, Li X F, Fu P M, Chen J, Liu J 2006Chin. Phys. Lett. 23 2729

    [19]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009Nature 461 1261

    [20]

    Maher-Mcwilliams C, Douglas P, Barker P F 2012Nat. Photon. 6 386

    [21]

    L H, Zhang J F, Zuo W L, Xu H F, Jin M X, Ding D J 2015Chin. Phys. B 24 063303

    [22]

    Mckenna J, Zeng S, Hua J J, Sayler A M, Zohrabi M, Johnson N G, Gaire B, Carnes K D, Esry B D, Ben-Itzhak I 2011Phys. Rev. A 84 43425

    [23]

    Wu J, Vredenborg A, Ulrich B, Schmidt L P H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Do Rner R 2011Phys. Rev. Lett. 107 43003

    [24]

    Nubbemeyer T, Eichmann U, Wsandner 2009J. Phys. B:At. Mol. Opt. Phys. 42 134010

    [25]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009Phys. Rev. Lett. 102 113002

    [26]

    Volkova E A, Popov A M, Tikhonova O V 2011Sov. Phys. JETP 113 394

    [27]

    Popov A M, Tikhonova O V, Volkova E A 2010Laser Phys. 20 1028

    [28]

    L H, Zuo W, Zhao L, Xu H, Jin M, Ding D, Hu S, Chen J 2016Phys. Rev. A 93 33415

    [29]

    Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013New J. Phys. 15 13001

    [30]

    Huang K, Xia Q, Fu L 2013Phys. Rev. A 87 33415

    [31]

    Baer T 1989Annu. Rev. Phys. Chern. 40 637

    [32]

    Ammosov M V, Delone N B, Krainov V P 1986Zh. Eksp. Teor. Fiz. 91 2008

    [33]

    Larochelle S, Talebpoury A, Chin S L 1998J. Phys. B:At. Mol. Opt. Phys. 31 1201

    [34]

    Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [35]

    Brabec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [36]

    Santra R, Gordon A 2006Phys. Rev. Lett. 96 73906

    [37]

    Shvetsov-Shilovskia N I, Goreslavskia S P, Popruzhenkoa S V, Beckerb W 2009Laser Phys. 19 1550

    [38]

    Dimitrovski D, Maurer J, Stapelfeldt H, Madsen L B 2014Phys. Rev. Lett. 113 103005

    [39]

    Sun X, Li M, Ye D, Xin G, Fu L, Xie X, Deng Y, Wu C, Liu J, Gong Q, Liu Y 2014Phys. Rev. Lett. 113 103001

  • [1] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [2] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [3] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211703
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [6] 白春江, 崔万照, 余金清. 超短超强激光脉冲辐照超薄碳膜电离状态研究. 物理学报, 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [7] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [8] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [9] 王艳海. 强场隧穿电离模式下的氦原子电离时间问题研究. 物理学报, 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [10] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [11] 童爱红, 冯国强. 分子双电离对激光偏振性的依赖关系. 物理学报, 2014, 63(2): 023303. doi: 10.7498/aps.63.023303
    [12] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究. 物理学报, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响. 物理学报, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [16] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [17] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [18] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响. 物理学报, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [19] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响. 物理学报, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  3646
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-15
  • 修回日期:  2016-08-12
  • 刊出日期:  2016-11-05

不同原子在飞秒强激光场中的里德堡态激发和双电离

  • 1. 吉林大学原子与分子物理研究所, 长春 130012
  • 通信作者: 吕航, Lvhang0811@jlu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2013CB922200)和国家自然科学基金(批准号:11534004,U1532138,11274140)资助的课题.

摘要: 利用质量分辨的脉冲电场电离方法结合飞行时间质谱,系统地研究了He,Ar和Xe原子在800 nm飞秒强激光场中的里德堡态激发过程,并将其与非序列双电离过程进行了比较,探讨了激发与非序列双电离过程的区别,以及不同原子里德堡态激发过程的规律性变化.研究结果有助于深入了解强激光场中原子里德堡态激发的物理机理.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回