搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于前冲康普顿电子高能伽马能谱测量系统设计

贾清刚 张天奎 许海波

引用本文:
Citation:

基于前冲康普顿电子高能伽马能谱测量系统设计

贾清刚, 张天奎, 许海波

Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion

Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo
PDF
导出引用
  • 除中子外,聚变核心同时释放大量高能伽马,其能谱可反映聚变过程的关键物理参数,并为过程诊断提供重要信息.由于聚变伽马的时间与能量特性,需要设计高探测效率及能量分辨率的伽马谱仪.根据高能伽马谱仪的概念设计(gamma-to-electron magnetic spectrometer),针对该系统中伽马-电子转换靶、电子偏转汇聚、电子探测等关键环节进行优化设计以提高系统探测效率及能量分辨率.其中采用Monte-Carlo程序Geant4模拟研究了伽马-电子转换靶中康普顿散射与多次库仑散射对由转换靶出射电子的能谱与角分布的影响.开发并行遗传算法对复杂几何偏转磁场参数进行优化,得到低强度(小于100 Gauss)复杂边界偏转磁场.根据系统优化设计结果,采用Geant4模拟了该系统对不同能量伽马的响应.此外,还可模拟该系统对特征聚变伽马能谱的测量,结果显示,该系统可在聚变中子产额分别为2.5×1015及1.2×1016条件下,对10–20 MeV高能伽马能谱测量实现能量分辨分别满足0.5 MeV(小于5%)及0.25 MeV(小于2.5%),说明该系统可用于聚变过程伽马能谱的诊断.
    Apart from neutrons, the fusion core produces gamma rays during fusion reaction. The spectrum of gamma ray can provide very important information for fusion diagnosis. However, due to the gamma energy and yield in one fusion pulse being both lower, the gamma spectrometer used should have high detection efficiency and energy resolution. The concept of a Gamma-to-electron magnetic spectrometer(GEMS) provides the idea to build up such a spectrometer to meet this requirement. Based on this concept design, four important parts of this facility are investigated. The first part is the gamma-electron converter. The main physics processes include Compton scattering of gamma ray with converter material generating electron, the electron multiple Coulomb scattering(MCS) inside the converter and the electron attenuation. Affected by the thickness of convector, these processes give a complex influence on the detection efficiency and angular-energy distribution of the electrons which are emitted from the downstream face of the convector. The Monte Carlo code Geant4 is employed to investigate theeffects of Compton scattering, MCS and converter thick on the angular-energy distribution. The second one is the collimation. The collimation is used to select the forward direction, the performances of cutoff angle of the collimator on the detection efficiency and resolutions, the correlation between electron transportation direction and energy, are also studied using Geant4 code. The third part is the dipole magnetic field. There are several geometric and magnetic parameters, therefore, a multi-thread parallelized genetic algorithm is developed to obtain the best result. Both the irregular geometric shape and dipole magnetic field strength are optimized to achieve the best energy resolution and detection efficiency. The obtained magnetic field has an intensity of less than 100 Gauss, and its performance on gathering elections is also verified by Geant4 code. The last one is the location of electron detectors. The study shows that all the electron detectors should be located not in a straight line but a quadratic curve. Then the optimized spectrometer is simulated by Geant4 to obtain the responses of gamma rays with various energies. For the gammas provided by fusion reaction, the simulation shows that when the neutron yields are about 2.5×1015 and 1.2×1016, the energy resolutions reach 0.5 MeV and 0.25 MeV, respectively, provided that different thick Be converters are employed. All in all, this optimized GEMS can be employed to measure the spectrum of gamma rays generated fom the fusion reaction.
      通信作者: 贾清刚, QGJIA_XJTU@126.com
    • 基金项目: 中国博士后科学基金(批准号:2015M581028)、国家自然基金(批准号:11675021,11505166)和中国工程物理研究院科学技术发展基金(批准号:2014A0402016)资助的课题.
      Corresponding author: Jia Qing-Gang, QGJIA_XJTU@126.com
    • Funds: Project supported by the Postdoctoral Science Foundation of China(Grant No. 2015M581028), the National Natural Science Foundation of China(Grant Nos. 11675021, 11505166), and the Science and Technology Developing Foundation of China Academy of Engineering Physics(Grant No. 2014A0402016).
    [1]

    Wang Y, Li Q, Li T T 2013 High Power Laser Part. Beams 25 3017 (in Chinese)[王毅, 李勤, 李天涛2013强激光与粒子束25 3017]

    [2]

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729 (in Chinese)[苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟2010物理学报59 7729]

    [3]

    Kim Y, Herrmann H W, Hilsabeck T J, Moy K, Stoeffl W, Mack J M, Young C S, Wu W, Barlow D B, Schillig J B, Sims J R, Lopez F E, Mares D, Oertel J A, Hayes-Sterbenz A C 2012 Rev. Sci. Ins. 83 10D311

    [4]

    Kim Y, Herrmann H W, Jorgenson H J, Barlow D B, Young C S, Stoeffl W, Casey D, Clancy T, Lopez F E, Oertel J A 2014 Rev. Sci. Ins. 85 11E122

    [5]

    Buis E J, Vacanti G 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 599 260

    [6]

    Liu J Q 2004 The Optics of Charged Particle Beams (Beijing:Higher Education Press) pp126-171(in Chinese)[吕建钦2004带电粒子束光学(北京:高等教育出版社)第126–171页]

    [7]

    Wang X P, Cao L M 2002 The Genetic Algorithm-Theory, Application & Implementation (Xi'an:Xi'an Jiaotong University Press) pp79-85(in Chinese)[王小平, 曹立明2002遗传算法——理论、应用与软件实现(西安:西安交通大学出版社)第79–85页]

  • [1]

    Wang Y, Li Q, Li T T 2013 High Power Laser Part. Beams 25 3017 (in Chinese)[王毅, 李勤, 李天涛2013强激光与粒子束25 3017]

    [2]

    Su Z F, Yang H L, Qiu A C, Sun J F, Cong P T, Wang L P, Lei T S, Han J J 2010 Acta Phys. Sin. 59 7729 (in Chinese)[苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟2010物理学报59 7729]

    [3]

    Kim Y, Herrmann H W, Hilsabeck T J, Moy K, Stoeffl W, Mack J M, Young C S, Wu W, Barlow D B, Schillig J B, Sims J R, Lopez F E, Mares D, Oertel J A, Hayes-Sterbenz A C 2012 Rev. Sci. Ins. 83 10D311

    [4]

    Kim Y, Herrmann H W, Jorgenson H J, Barlow D B, Young C S, Stoeffl W, Casey D, Clancy T, Lopez F E, Oertel J A 2014 Rev. Sci. Ins. 85 11E122

    [5]

    Buis E J, Vacanti G 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 599 260

    [6]

    Liu J Q 2004 The Optics of Charged Particle Beams (Beijing:Higher Education Press) pp126-171(in Chinese)[吕建钦2004带电粒子束光学(北京:高等教育出版社)第126–171页]

    [7]

    Wang X P, Cao L M 2002 The Genetic Algorithm-Theory, Application & Implementation (Xi'an:Xi'an Jiaotong University Press) pp79-85(in Chinese)[王小平, 曹立明2002遗传算法——理论、应用与软件实现(西安:西安交通大学出版社)第79–85页]

  • [1] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [2] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应. 物理学报, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [3] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [4] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [5] 苏兆锋, 来定国, 邱孟通, 徐启福, 任书庆. 脉冲硬X射线能注量测量技术. 物理学报, 2020, 69(14): 145202. doi: 10.7498/aps.69.20191700
    [6] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [7] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [8] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [9] 祁建敏, 周林, 蒋世伦, 张建华. 聚变中子能谱测量系统脉冲中子灵敏度的实验研究. 物理学报, 2013, 62(24): 245203. doi: 10.7498/aps.62.245203
    [10] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [11] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [12] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [13] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [14] 向永春, 龚 建, 李 伟, 卞直上, 郝樊华, 王红侠, 王 茜, 熊宗华. 37Ar测量系统的研制与能谱测量方法研究. 物理学报, 2008, 57(2): 784-789. doi: 10.7498/aps.57.784
    [15] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [16] 刘素萍, 伍怀龙, 古当长, 龚建, 郝樊华, 胡广春. 类型γ射线能谱指纹的识别机理. 物理学报, 2002, 51(11): 2411-2416. doi: 10.7498/aps.51.2411
    [17] 杨家敏, 丁耀南, 易荣清, 王耀梅, 张文海, 郑志坚. 软X射线能谱定量测量技术研究. 物理学报, 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [18] 杨家敏, 丁耀南, 孙可煦, 成金秀, 江少恩, 郑志坚, 张文海. 用透射光栅谱仪测量金箔背侧X射线能谱. 物理学报, 2000, 49(4): 747-750. doi: 10.7498/aps.49.747
    [19] 张天保, 王少阶, 李耀清, 唐孝威. 3S1态电子偶素3γ衰变的γ射线能谱测量. 物理学报, 1983, 32(5): 670-674. doi: 10.7498/aps.32.670
    [20] 西门纪业. 静电透镜与磁偏转器的复合系统的电子光学性质和象差理论. 物理学报, 1978, 27(3): 247-259. doi: 10.7498/aps.27.247
计量
  • 文章访问数:  4052
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-03
  • 修回日期:  2016-08-22
  • 刊出日期:  2017-01-05

基于前冲康普顿电子高能伽马能谱测量系统设计

  • 1. 中国工程物理研究院北京应用物理与计算数学研究所, 北京 100094;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
  • 通信作者: 贾清刚, QGJIA_XJTU@126.com
    基金项目: 中国博士后科学基金(批准号:2015M581028)、国家自然基金(批准号:11675021,11505166)和中国工程物理研究院科学技术发展基金(批准号:2014A0402016)资助的课题.

摘要: 除中子外,聚变核心同时释放大量高能伽马,其能谱可反映聚变过程的关键物理参数,并为过程诊断提供重要信息.由于聚变伽马的时间与能量特性,需要设计高探测效率及能量分辨率的伽马谱仪.根据高能伽马谱仪的概念设计(gamma-to-electron magnetic spectrometer),针对该系统中伽马-电子转换靶、电子偏转汇聚、电子探测等关键环节进行优化设计以提高系统探测效率及能量分辨率.其中采用Monte-Carlo程序Geant4模拟研究了伽马-电子转换靶中康普顿散射与多次库仑散射对由转换靶出射电子的能谱与角分布的影响.开发并行遗传算法对复杂几何偏转磁场参数进行优化,得到低强度(小于100 Gauss)复杂边界偏转磁场.根据系统优化设计结果,采用Geant4模拟了该系统对不同能量伽马的响应.此外,还可模拟该系统对特征聚变伽马能谱的测量,结果显示,该系统可在聚变中子产额分别为2.5×1015及1.2×1016条件下,对10–20 MeV高能伽马能谱测量实现能量分辨分别满足0.5 MeV(小于5%)及0.25 MeV(小于2.5%),说明该系统可用于聚变过程伽马能谱的诊断.

English Abstract

参考文献 (7)

目录

    /

    返回文章
    返回