搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维自旋1键交替XXZ链中的量子纠缠和临界指数

苏耀恒 陈爱民 王洪雷 相春环

引用本文:
Citation:

一维自旋1键交替XXZ链中的量子纠缠和临界指数

苏耀恒, 陈爱民, 王洪雷, 相春环

Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains

Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan
PDF
导出引用
  • 利用基于张量网络表示的矩阵乘积态算法以及无限虚时间演化块抽取方法,本文研究了一维无限格点自旋1的键交替反铁磁XXZ海森伯模型中的量子相变.分别计算了系统的von Neumann熵、单位格点保真度和序参量,从而得到了系统随键交替强度的变化从拓扑有序Nel相到局域有序二聚化相的量子相变点.我们用矩阵乘积态方法拟合出了相变的中心荷c 0.5,表明此相变属于二维经典的Ising普适类.另外,通过对拓扑Nel序的数值拟合,我们得到了相变点处的特征临界指数'=0.236和'=0.838.
    The characterization of the quantum phase transition in a lowdimensional system has attracted a considerable amount of attention in quantum manybody systems. As one of the fundamental models in quantum magnetism, spin-1 models have richer phase diagrams and show more complex physical phenomena. In the spin-1 antiferromagnetic XXZ model, the Haldane phase and the Nel phase are the gapped topologic phases which cannot be characterized by the local order parameters. To characterize the nature in such phases, one has to calculate the non-local long range order parameters. Normally, the non-local order parameter in the topological phase is obtained from the extrapolation of finite-sized system in numerical study. However, it is difficult to extract the critical exponents with such an extrapolated non-local order parameter due to the numerical accuracy. In a recently developed tensor network representation, i.e., the infinite matrix product state (iMPS) algorithm, it was shown that the non-local order can be directly calculated from a very large lattice distance in an infinite-sized system rather than an extrapolated order parameter in a finite-sized system. Therefore, it is worthwhile using this convenient technique to study the non-local orders in the topological phases and characterize the quantum criticalities in the topological quantum phase transitions. In this paper, by utilizing the infinite matrix product state algorithm based on the tensor network representation and infinite time evolving block decimation method, the quantum entanglement, fidelity, and critical exponents of the topological phase transition are investigated in the one-dimensional infinite spin-1 bond-alternating XXZ Heisenberg model. It is found that there is always a local dimerization order existing in the whole parameter range when the bond-alternative strength parameter changes from 0 to 1. Also, due to the effect of the bond-alternating, there appears a quantum phase transition from the long-rang ordering topological Nel phase to the local ordering dimerization phase. The von Neumann entropy, fidelity per lattice site, and order parameters all give the same phase transition point at c = 0.638. To identify the type of quantum phase transition, the central charge c 0.5 is extracted from the ground state von Neumann entropy and the finite correlation length, which indicates that the phase transition belongs to the two-dimensional Ising universality class. Furthermore, it is found that the Nel order and the susceptibility of Nel order have power-law relations to |-c|. From the numerical fitting of the Nel order and its susceptibility, we obtain the characteristic critical exponents ' = 0.236 and ' = 0.838. It indicates that such critical exponents from our method characterize the nature of the quantum phase transition. Our critical exponents from the iMPS method can provide guidance for studying the properties of the phase transition in quantum spin systems.
      通信作者: 相春环, wanghl@cqmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504283)资助的课题.
      Corresponding author: Xiang Chun-Huan, wanghl@cqmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504283).
    [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)

    [2]

    Kitazawa A, Nomura K, Okamoto K 1996 Phys. Rev. Lett. 76 4038

    [3]

    Rizzi M, Rossini D, Chiara G D, Montangero S, Fazio R 2005 Phys. Rev. Lett. 95 240404

    [4]

    Peters D, McCulloch I P, Selke W 2009 Phys. Rev. B 79 132406

    [5]

    Katsura H, Tasaki H 2013 Phys. Rev. Lett. 110 130405

    [6]

    Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304

    [7]

    Hatsugai Y 2007 J. Phys.: Condens. Matter 19 145209

    [8]

    Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125

    [9]

    Ueda H, Nakano H, Kusakabe K 2008 Phys. Rev. B 78 224402

    [10]

    Su Y H, Cho S Y, Li B, Wang H, Zhou H 2012 J. Phys. Soc. Jpn. 81 074003

    [11]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [12]

    Su Y H, Hu B, Li S, Cho S Y 2013 Phys. Rev. E 88 032110

    [13]

    Wang H, Li B, Cho S Y 2013 Phys. Rev. B 87 054402

    [14]

    Wang H, Cho S Y 2015 J. Phys.: Condens. Matter 27 015603

    [15]

    Kato Y, Tanaka A 1994 J. Phys. Soc. Jpn. 63 1277

    [16]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [17]

    Korepin V E 2004 Phys. Rev. Lett. 92 096402

    [18]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [19]

    Chung M, Landau D P 2011 Phys. Rev. B 83 113104

    [20]

    Ma F, Liu S, Kong X 2011 Phys. Rev. A 83 062309

    [21]

    Xu Y, Wang L, Kong X 2013 Phys. Rev. A 87 012312

    [22]

    Zanardi P, Paunkovi N 2006 Phys. Rev. E 74 031123

    [23]

    Rams M M, Damski B 2011 Phys. Rev. Lett. 106 055701

    [24]

    Zhou H, Barjaktarevi J P 2008 J. Phys. A: Math. Theor. 41 412001

    [25]

    Yu Y, Mller G, Viswanath V S 1996 Phys. Rev. B 54 9242

    [26]

    Tagliacozzo L, de Oliveira T R, Iblisdir S, Latorre J I 2008 Phys. Rev. B 78 024410

    [27]

    Pollmann F, Mukerjee S, Turner A, Moore J E 2009 Phys. Rev. Lett. 102 255701

    [28]

    Su Y H, Chen A M, Xiang C, Wang H, Xia C, Wang J 2016 J. Stat. Mech. 2016 123102

  • [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)

    [2]

    Kitazawa A, Nomura K, Okamoto K 1996 Phys. Rev. Lett. 76 4038

    [3]

    Rizzi M, Rossini D, Chiara G D, Montangero S, Fazio R 2005 Phys. Rev. Lett. 95 240404

    [4]

    Peters D, McCulloch I P, Selke W 2009 Phys. Rev. B 79 132406

    [5]

    Katsura H, Tasaki H 2013 Phys. Rev. Lett. 110 130405

    [6]

    Kennedy T, Tasaki H 1992 Phys. Rev. B 45 304

    [7]

    Hatsugai Y 2007 J. Phys.: Condens. Matter 19 145209

    [8]

    Pollmann F, Berg E, Turner A, Oshikawa M 2012 Phys. Rev. B 85 075125

    [9]

    Ueda H, Nakano H, Kusakabe K 2008 Phys. Rev. B 78 224402

    [10]

    Su Y H, Cho S Y, Li B, Wang H, Zhou H 2012 J. Phys. Soc. Jpn. 81 074003

    [11]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [12]

    Su Y H, Hu B, Li S, Cho S Y 2013 Phys. Rev. E 88 032110

    [13]

    Wang H, Li B, Cho S Y 2013 Phys. Rev. B 87 054402

    [14]

    Wang H, Cho S Y 2015 J. Phys.: Condens. Matter 27 015603

    [15]

    Kato Y, Tanaka A 1994 J. Phys. Soc. Jpn. 63 1277

    [16]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [17]

    Korepin V E 2004 Phys. Rev. Lett. 92 096402

    [18]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [19]

    Chung M, Landau D P 2011 Phys. Rev. B 83 113104

    [20]

    Ma F, Liu S, Kong X 2011 Phys. Rev. A 83 062309

    [21]

    Xu Y, Wang L, Kong X 2013 Phys. Rev. A 87 012312

    [22]

    Zanardi P, Paunkovi N 2006 Phys. Rev. E 74 031123

    [23]

    Rams M M, Damski B 2011 Phys. Rev. Lett. 106 055701

    [24]

    Zhou H, Barjaktarevi J P 2008 J. Phys. A: Math. Theor. 41 412001

    [25]

    Yu Y, Mller G, Viswanath V S 1996 Phys. Rev. B 54 9242

    [26]

    Tagliacozzo L, de Oliveira T R, Iblisdir S, Latorre J I 2008 Phys. Rev. B 78 024410

    [27]

    Pollmann F, Mukerjee S, Turner A, Moore J E 2009 Phys. Rev. Lett. 102 255701

    [28]

    Su Y H, Chen A M, Xiang C, Wang H, Xia C, Wang J 2016 J. Stat. Mech. 2016 123102

  • [1] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [2] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [3] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [4] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [5] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [6] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [7] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [8] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [9] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [10] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [11] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [12] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [13] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变 . 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [17] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [19] 蔡 卓, 陆文彬, 刘拥军. 交错Dzyaloshinskii-Moriya相互作用对反铁磁Heisenberg链纠缠的影响. 物理学报, 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  3543
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-03-28
  • 刊出日期:  2017-06-05

一维自旋1键交替XXZ链中的量子纠缠和临界指数

  • 1. 西安工程大学理学院, 西安 710048;
  • 2. 西安交通大学理学院, 西安 710049;
  • 3. 重庆医科大学医学信息学院, 重庆 400016;
  • 4. 重庆医科大学公共卫生与管理学院, 重庆 400016
  • 通信作者: 相春环, wanghl@cqmu.edu.cn
    基金项目: 国家自然科学基金(批准号:11504283)资助的课题.

摘要: 利用基于张量网络表示的矩阵乘积态算法以及无限虚时间演化块抽取方法,本文研究了一维无限格点自旋1的键交替反铁磁XXZ海森伯模型中的量子相变.分别计算了系统的von Neumann熵、单位格点保真度和序参量,从而得到了系统随键交替强度的变化从拓扑有序Nel相到局域有序二聚化相的量子相变点.我们用矩阵乘积态方法拟合出了相变的中心荷c 0.5,表明此相变属于二维经典的Ising普适类.另外,通过对拓扑Nel序的数值拟合,我们得到了相变点处的特征临界指数'=0.236和'=0.838.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回