搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动

王日兴 叶华 王丽娟 敖章洪

引用本文:
Citation:

垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动

王日兴, 叶华, 王丽娟, 敖章洪

Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer

Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong
PDF
导出引用
  • 在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.
    Spin-transfer effects induced by spin-polarized current in the spin valve structures present a platform for studying different static and dynamic magnetization states sustained or driven by current. Especially, it can excite some new magnetic states and cause magnetization reversal and precession, which offers some promising applications in data processing and microwave emission. However, most of researches so far have focused on the spin valve structure with parallel or perpendicular anisotropy. Compared with the spin valve structure with parallel or perpendicular anisotropy device, the spin valve structure with a tilted polarizer is also hopeful for its potential application in fast-switching and high-density magnetic recording. Moreover, the tilted polarizer provides a new way to control the spin torquedriven magnetization dynamics in spin valve structure. In this paper, the magnetization reversal and precession driven by the spin-transfer torque in spin valve structures with a perpendicular free layer and a tilted polarizer layer are investigated theoretically. By linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque, two coupled dynamically evolutive equations and new equilibrium directions are obtained. Performing stability analysis for all new equilibrium directions and taking [Co/Ni]4 multilayers as an illustrative example, we obtain the phase diagrams of magnetic states defined in parameter space spanned by external magnetic field and current density. Several magnetic states, including quasi-parallel stable states, quasi-antiparallel stable states, out-of-plane precession, and bistable states are distinguished in the phase diagrams. Through adjusting the magnitudes of current density and external magnetic field, the switching from stable states to precessional ones and the reversal between two stable states can be realized, and the reversal current increases with the external magnetic field increasing. Meanwhile, we portray the phase diagram of magnetic states defined in parameter space spanned by current density and the direction of tilted polarizer. In this case, the out-of-plane precession does not emerge as the current density and external magnetic field are relatively small. Affected by the directions of spin polarizer, the reversal current of magnetization is lowest when the direction of spin polarizer is parallel to the easy axis of free-layer, and is largest when the direction of spin polarizer is perpendicular to the easy axis of free-layer. Selecting the different directions of the polarized-layer magnetization provides an alternative way to improve the efficiency of current-driven microwave emitting and magnetization reversal. By solving temporal evolution equations numerically, the behaviors of different magnetic states are shown and the validities of the phase diagrams are confirmed.
      通信作者: 王日兴, wangrixing1982@sina.com
    • 基金项目: 国家自然科学基金(批准号:11347132)、湖南省自然科学基金(批准号:2016JJ3096)和湖南省教育厅一般项目(批准号:14C0807)资助的课题.
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347132), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3096), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 14C0807).
    [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Katinea J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [9]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [10]

    Albrecht M, Hu G, Guhr I L, Ulbrich T C, Boneberg J 2005 Nat. Mater. 4 203

    [11]

    Wang J P 2005 Nat. Mater. 4 191

    [12]

    Zhang H, Lin W W, Mangin S 2013 Appl. Phys. Lett. 102 012411

    [13]

    Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S, Wang Y G 2010 J. Magn. Magn. Mater. 322 2264

    [14]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [15]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905

    [16]

    Zhou Y, Zhang H, Liu Y W 2012 J. Appl. Phys. 112 063903

    [17]

    Zhou Y, Bonetti S, Zha C L, kerman J 2009 New J. Phys. 11 103028

    [18]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [19]

    Bazaliy Y B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421

    [20]

    Grollier J, Cros V, Jaffrs H, Hamzic A, George J M, Faini G, Ben Y J, Gall H L, Fert A 2003 Phys. Rev. B 67 174402

    [21]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [22]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [23]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [24]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 物理学报 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Katinea J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [9]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210

    [10]

    Albrecht M, Hu G, Guhr I L, Ulbrich T C, Boneberg J 2005 Nat. Mater. 4 203

    [11]

    Wang J P 2005 Nat. Mater. 4 191

    [12]

    Zhang H, Lin W W, Mangin S 2013 Appl. Phys. Lett. 102 012411

    [13]

    Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S, Wang Y G 2010 J. Magn. Magn. Mater. 322 2264

    [14]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [15]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905

    [16]

    Zhou Y, Zhang H, Liu Y W 2012 J. Appl. Phys. 112 063903

    [17]

    Zhou Y, Bonetti S, Zha C L, kerman J 2009 New J. Phys. 11 103028

    [18]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [19]

    Bazaliy Y B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421

    [20]

    Grollier J, Cros V, Jaffrs H, Hamzic A, George J M, Faini G, Ben Y J, Gall H L, Fert A 2003 Phys. Rev. B 67 174402

    [21]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [22]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [23]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [24]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [2] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [3] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [4] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [5] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [8] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [9] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [10] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究. 物理学报, 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [11] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [12] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [13] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [14] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [15] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [16] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步. 物理学报, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [17] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [18] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [19] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [20] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅱ)——稳定性分析. 物理学报, 1993, 42(6): 992-998. doi: 10.7498/aps.42.992
计量
  • 文章访问数:  2752
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-03-18
  • 刊出日期:  2017-06-05

垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动

  • 1. 湖南文理学院洞庭湖生态经济区建设与发展省级协同创新中心, 常德 415000;
  • 2. 湖南文理学院电气与信息工程学院, 常德 415000
  • 通信作者: 王日兴, wangrixing1982@sina.com
    基金项目: 国家自然科学基金(批准号:11347132)、湖南省自然科学基金(批准号:2016JJ3096)和湖南省教育厅一般项目(批准号:14C0807)资助的课题.

摘要: 在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回