搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四光束剪切相干成像目标重构算法研究

陆长明 陈明徕 罗秀娟 张羽 刘辉 兰富洋 曹蓓

引用本文:
Citation:

四光束剪切相干成像目标重构算法研究

陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓

Target reconstruction algorithm for four-beam sheared coherent imaging

Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei
PDF
导出引用
  • 针对传统剪切光束成像技术的准实时性问题,提出用口字形排布的四束光代替传统L形三束剪切光照射目标,研究了四光束剪切相干成像目标重构算法.只需单次测量就能同时重构出四幅目标图像,减少了用于降低散斑噪声、获取高质量图像所需的测量次数,同时大大减少了多组发射时的光束切换次数,提高了成像效率.在算法实现中,通过最小二乘法恢复出四组波前相位,利用散斑幅值的简单代数运算恢复波前幅值,从而重构出目标图像.仿真结果表明,与传统方法相比,在图像质量相同的前提下,本文方法所需的数据采集时间减少了至少1/2,不但提高了目标重构效率,还可为远程运动目标的成像识别提供更好的手段.
    Sheared-beam imaging, which is a nonconventional coherent laser imaging technique, can be used to better solve the problem of taking pictures with high resolution for remote targets through turbulent medium than conventional optical methods. In the previous research on this technique, a target was illuminated by three coherent laser beams that were laterally arranged at the transmitter plane into an L pattern. In order to obtain a high quality image, a series of time-varying scattered signals is collected to reconstruct speckled images of the same object. To overcome atmospheric turbulence, multiple sets of three-beam laser should be emitted, which increases data acquisition time. In this paper, aiming at the quasi real-time problem of conventional sheared beam imaging technique, we use four-beam laser with rectangular distribution instead of the traditional L type sheared three-beam laser to illuminate the target. According to this, we propose a target reconstruction algorithm for four-beam sheared coherent imaging to reconstruct four target images simultaneously in one measurement, which can acquire high quality images by reducing the amount of measurement and the speckle noise. Meanwhile, it can greatly reduce the amount of beam switching in multi-group emission and improve the imaging efficiency. Firstly, the principle of the four-beam sheared coherent imaging technique is deduced. Secondly, in the algorithm, the speckle amplitude and phase difference frames can be extracted accurately by searching for the accurate positions of the beat frequency components. Based on the speckle phase difference frames, four sets of wavefront phases can be demodulated by the least squares method, and wavefront amplitude can be obtained by algebraic operation of speckle amplitude. The reconstructed wavefront is used for inverse Fourier transform to yield a two-dimensional image. A series of speckled images is averaged to form an incoherent image. Finally, the validity of the proposed technique is verified by simulations. From the simulation results, the image quality of the proposed method is better than that of the traditional method in the same amount of measurement. Furthermore, on the premise of the same image quality, the data acquisition amount of the proposed method is 2-3 times as large as that of the traditional method. In other words, compared with that of the traditional method, the data acquisition time of the proposed method is reduced at least by half and the algorithm processing time is less. It can be concluded that the proposed imaging technique can not only improve the efficiency of target reconstruction, but also present a better way of imaging the remote moving targets.
      通信作者: 陈明徕, shuxuemlchen@163.com
      Corresponding author: Chen Ming-Lai, shuxuemlchen@163.com
    [1]

    Voelz D G 1995 Proc. SPIE 2566 74

    [2]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [3]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150

    [4]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [5]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [6]

    Sica L 1996 Appl. Opt. 35 264

    [7]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Gamiz V L 1994 Proc. SPIE 2302 2

    [10]

    Hutchin R A US Patent 20120292481 [2012-11-22]

    [11]

    Hutchin R A US Patent 20120162631 [2012-06-28]

    [12]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [13]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese) [陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [14]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [15]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [16]

    Zebker H A, Lu Y P 1998 J. Opt. Soc. Am. A 15 586

    [17]

    Takajo H, Takahashi T 1988 J. Opt. Soc. Am. A 5 1818

    [18]

    Hudgin R H 1977 J. Opt. Soc. Am. A 67 375

    [19]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [20]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 物理学报 64 054204]

    [21]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese) [曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205]

  • [1]

    Voelz D G 1995 Proc. SPIE 2566 74

    [2]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [3]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150

    [4]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [5]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [6]

    Sica L 1996 Appl. Opt. 35 264

    [7]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Gamiz V L 1994 Proc. SPIE 2302 2

    [10]

    Hutchin R A US Patent 20120292481 [2012-11-22]

    [11]

    Hutchin R A US Patent 20120162631 [2012-06-28]

    [12]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [13]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese) [陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203]

    [14]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [15]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [16]

    Zebker H A, Lu Y P 1998 J. Opt. Soc. Am. A 15 586

    [17]

    Takajo H, Takahashi T 1988 J. Opt. Soc. Am. A 5 1818

    [18]

    Hudgin R H 1977 J. Opt. Soc. Am. A 67 375

    [19]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [20]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 物理学报 64 054204]

    [21]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese) [曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205]

  • [1] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法. 物理学报, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] 张羽, 罗秀娟, 刘辉, 陈明徕, 兰富洋, 贾辉, 曹蓓. 远程多光束激光相干场成像拍频误差校正研究. 物理学报, 2018, 67(4): 044201. doi: 10.7498/aps.67.20172125
    [7] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像. 物理学报, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [9] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [12] 兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉. 剪切光束成像技术对纵深目标的成像. 物理学报, 2017, 66(20): 204202. doi: 10.7498/aps.66.204202
    [13] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [14] 李明飞, 杨然, 霍娟, 赵连洁, 杨文良, 王俊, 张安宁. 基于光子计数的合作目标量子成像. 物理学报, 2015, 64(22): 224208. doi: 10.7498/aps.64.224208
    [15] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [16] 曹蓓, 罗秀娟, 陈明徕, 张羽. 相干场成像全相位目标直接重构法. 物理学报, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [17] 连天虹, 王石语, 蔡德芳, 李兵斌, 过振. 多子光束相干发射小目标探测研究. 物理学报, 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [18] 唐茜, 赵葆常, 邱跃洪, 张淳民, 穆廷魁. 基于光瞳分割和角剪切的成像偏振光谱技术. 物理学报, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [19] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究. 物理学报, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [20] 郏东耀, 丁天怀. 皮棉杂质透射检测及成像目标增强方法. 物理学报, 2005, 54(9): 4058-4064. doi: 10.7498/aps.54.4058
计量
  • 文章访问数:  4268
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-03-17
  • 刊出日期:  2017-06-05

/

返回文章
返回