搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能

朱海哲 阮莹 谷倩倩 闫娜 代富平

引用本文:
Citation:

落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能

朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平

Rapid solidification mechanism and magnetic properties of Ni-Fe-Ti alloy prepared in drop tube

Zhu Hai-Zhe, Ruan Ying, Gu Qian-Qian, Yan Na, Dai Fu-Ping
PDF
导出引用
  • 采用落管自由落体方法实现了Ni45Fe40Ti15合金在微重力无容器条件下的快速凝固,获得了直径介于160–1050 μm的合金液滴.理论计算表明冷却速率及过冷度随液滴直径减小而增大,并呈指数函数关系,实验获得的最大过冷度为210 K (0.14 TL).随着过冷度增大,凝固组织中粗大的γ-(Fe,Ni)枝晶逐渐细化,二次枝晶间距减小,溶质Ti在γ-(Fe,Ni)相中的固溶度显著扩展.对不同直径合金液滴的凝固样品进行磁学性能分析,结果表明随着凝固合金液滴直径减小,其饱和磁化强度增大,矫顽力减小,矩形比下降,软磁性能明显提高.
    Ni-Fe-Ti ternary alloys, as a type of structural and magnetic material, have received more attention in the industrial fields in recent decades. For the purpose of providing necessary experimental data and theoretical basis for industrial appliance of these alloys, the researches of rapid solidification mechanism and relevant application performances of Ni45Fe40Ti15 ternary alloy are carried out in this paper. Rapid solidification of undercooled Ni45Fe40Ti15 ternary alloy is realized in a 3 m drop tube under the condition of containerless and microgravity state. In an experiment, the sample with a mass of 2 g is placed in a φ16 mm×150 mm quartz tube with a 0.3-mm-diameter nozzle at its bottom. The quartz tube is then installed in the induction coil on the top of the drop tube. The tube body is evacuated to a pressure of 2×10-5 Pa and backfilled with the mixture gas of Ar and He gases to about 1×105 Pa. After that the sample is melted by induction heating and superheated to about 200 K above its liquidus temperature. Under such a condition, the melt is ejected through the nozzle by a flow of Ar gas and dispersed into fine liquid droplets. These liquid droplets solidify rapidly during free fall, and the droplets with the diameters ranging from 160 to 1050 μm are achieved. As droplet diameter decreases, both cooling rate and undercooling of the alloy droplet increase exponentially, i.e., from 1.10×103 to 3.87×104 K·-1 and from 42 to 210 K (0.14TL) respectively. The microstructure consists of γ -(Fe, Ni) solid solution and interdendritic Fe2Ti intermetallic compound. As undercooling increases, the coarse γ -(Fe, Ni) dendrites become refined, the secondary dendrite arm spacing linearly decreases. Compared with the result in the glass fluxing experiment, the dendrites are much refined by drop tube processing due to the higher cooling rate obtained. The amounts of solute Ni and Ti content in the γ -(Fe, Ni) phase enlarge evidently with the increase of undercooling, suggesting the occurrence of solute trapping. The magnetic properties of thealloy droplets sre also analyzed. When droplet diameter decreases from 1100 to 300 μm, the saturation magnetization increases from 22.47 to 41.82 Am2·kg-1, the coercive force decreases from 3.33 to 0.80 KAm-1, and the squareness ratio decreases approximately by four times. This indicates that the soft magnetic properties of the alloy are improved remarkably by drop tube processing. Furthermore, the mechanism for substantial effect of undercooling on magnetic parameter such as coercive force needs to be further investigated.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,U1660108,51671161)、航空科学基金(批准号:2014ZF53069)和陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)资助的课题.
      Corresponding author: Ruan Ying, ruany@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51327901,U1660108,51671161),Aviation Science Foundation of China (Grant No.2014ZF53069) and Shaanxi Industrial Science and Technology Project (Grant No.2016GY-247).
    [1]

    Woodcock T G, Shuleshova O, Gehrmann B, Löser W 2008 Metall Mater. Trans. A 39 2906

    [2]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [3]

    Yang S, Su Y P, Liu W J, Huang W D, Zhou X H 2003 Acta Phys. Sin. 52 81 (in Chinese)[杨森, 苏云鹏, 刘文今, 黄卫东, 周尧和 2003 物理学报 52 81]

    [4]

    McDonald N J, Sridhar S 2003 Metall. Trans. A 34 1931

    [5]

    Sumida M 2003 J. Alloys Compd. 349 302

    [6]

    Eckler K, Gartner F, Assadi H, Norman A F, Greer A L, Herlach D M 1997 Mater. Sci. Eng. A 226 410

    [7]

    Vandyoussefi M, Kerr H W, Kurz W 2000 Acta Mater. 48 2297

    [8]

    Preston S, Johnson G W 1984 J. Magn. Magn. Mater. 43 227

    [9]

    Wang F, Liu Z L, Qiu D, Taylor J A, Easton M A, Zhang M X 2015 Metall. Mater. Trans. A 46 505

    [10]

    Chen S H, Zhao M J, Rong L J 2013 Mater. Sci. Eng. A 571 33

    [11]

    Cacciamani G, de Keyzer J, Ferro R, Klotz U E, Lacaze J, Wollants P 2006 Intermetallics 14 1312

    [12]

    Zhou Z, Liu Y J, Sheng G, Lei F Y, Kang Z T 2015 Calphad 48 151

    [13]

    Gupta K P 2001 J. Phase Equilib. 22 171

    [14]

    Riani P, Cacciamani G, Thebaut Y, Lacaze J 2006 Intermetallics 14 1226

    [15]

    de Keyzer J, Cacciamani G, Dupin N, Wollants P 2009 Calphad 33 109

    [16]

    Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Loffler J F 2010 Intermetallics 18 374

    [17]

    Ruan Y, Wang N, Cao C D, Wei B B 2004 Chin. Sci. Bull. 49 1830 (in Chinese)[阮莹, 王楠, 曹崇德, 魏炳波 2004 科学通报 49 1830]

    [18]

    Sunol J J, Gonzalez A, Escoda L 2004 J. Mater. Sci. 39 5147

    [19]

    Ruan Y, Zhu H Z, Wang Q Q, Dai F P, Geng D L, Wei B 2017 in preparation

    [20]

    Tkatch V I, Denisenko S H, Beloshov O N 1997 Acta Mater. 45 2821

    [21]

    Lee E, Ahn S 1994 Acta Metal Mater. 42 3231

    [22]

    Adler E, Geory W 1989 Int. J. Powder Metall. 25 319

    [23]

    Hamzaoui R, Elkedim O, Gafft E 2004 J. Mater. Sci. 203 129

    [24]

    Jartych X, Zurawicz J K, Oleszak D, Pekala M 2000 J. Magn. Magn. Mater. 208 22

    [25]

    Liu G F, Zhang Z D, Dang F, Cheng C B, Hou C X, Liu S D 2016 J. Magn. Magn. Mater. 412 55

    [26]

    Herzer G 1989 IEEE Trans Magn 25 3327

  • [1]

    Woodcock T G, Shuleshova O, Gehrmann B, Löser W 2008 Metall Mater. Trans. A 39 2906

    [2]

    Ruan Y, Wang X J, Chang S Y 2015 Acta Mater. 91 183

    [3]

    Yang S, Su Y P, Liu W J, Huang W D, Zhou X H 2003 Acta Phys. Sin. 52 81 (in Chinese)[杨森, 苏云鹏, 刘文今, 黄卫东, 周尧和 2003 物理学报 52 81]

    [4]

    McDonald N J, Sridhar S 2003 Metall. Trans. A 34 1931

    [5]

    Sumida M 2003 J. Alloys Compd. 349 302

    [6]

    Eckler K, Gartner F, Assadi H, Norman A F, Greer A L, Herlach D M 1997 Mater. Sci. Eng. A 226 410

    [7]

    Vandyoussefi M, Kerr H W, Kurz W 2000 Acta Mater. 48 2297

    [8]

    Preston S, Johnson G W 1984 J. Magn. Magn. Mater. 43 227

    [9]

    Wang F, Liu Z L, Qiu D, Taylor J A, Easton M A, Zhang M X 2015 Metall. Mater. Trans. A 46 505

    [10]

    Chen S H, Zhao M J, Rong L J 2013 Mater. Sci. Eng. A 571 33

    [11]

    Cacciamani G, de Keyzer J, Ferro R, Klotz U E, Lacaze J, Wollants P 2006 Intermetallics 14 1312

    [12]

    Zhou Z, Liu Y J, Sheng G, Lei F Y, Kang Z T 2015 Calphad 48 151

    [13]

    Gupta K P 2001 J. Phase Equilib. 22 171

    [14]

    Riani P, Cacciamani G, Thebaut Y, Lacaze J 2006 Intermetallics 14 1226

    [15]

    de Keyzer J, Cacciamani G, Dupin N, Wollants P 2009 Calphad 33 109

    [16]

    Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Loffler J F 2010 Intermetallics 18 374

    [17]

    Ruan Y, Wang N, Cao C D, Wei B B 2004 Chin. Sci. Bull. 49 1830 (in Chinese)[阮莹, 王楠, 曹崇德, 魏炳波 2004 科学通报 49 1830]

    [18]

    Sunol J J, Gonzalez A, Escoda L 2004 J. Mater. Sci. 39 5147

    [19]

    Ruan Y, Zhu H Z, Wang Q Q, Dai F P, Geng D L, Wei B 2017 in preparation

    [20]

    Tkatch V I, Denisenko S H, Beloshov O N 1997 Acta Mater. 45 2821

    [21]

    Lee E, Ahn S 1994 Acta Metal Mater. 42 3231

    [22]

    Adler E, Geory W 1989 Int. J. Powder Metall. 25 319

    [23]

    Hamzaoui R, Elkedim O, Gafft E 2004 J. Mater. Sci. 203 129

    [24]

    Jartych X, Zurawicz J K, Oleszak D, Pekala M 2000 J. Magn. Magn. Mater. 208 22

    [25]

    Liu G F, Zhang Z D, Dang F, Cheng C B, Hou C X, Liu S D 2016 J. Magn. Magn. Mater. 412 55

    [26]

    Herzer G 1989 IEEE Trans Magn 25 3327

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232002
    [2] 武博文, 胡亮, 耿德路, 魏炳波. 液态Zr35Al23Ni22Gd20合金的亚稳相分离与双相非晶形成机理. 物理学报, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [4] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [5] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [6] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [7] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [8] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [9] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [10] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [11] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律. 物理学报, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [12] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [13] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [14] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [15] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [18] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [19] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  4275
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-06
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-07-05

/

返回文章
返回