搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光III主机极向驱动靶丸表面辐照均匀性

余波 丁永坤 蒋炜 黄天晅 陈伯伦 蒲昱东 晏骥 陈忠靖 张兴 杨家敏 江少恩 郑坚

引用本文:
Citation:

神光III主机极向驱动靶丸表面辐照均匀性

余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏, 江少恩, 郑坚

Laser irradiation uniformity for polar direct drive on ShenGuang III facility

Yu Bo, Ding Yong-Kun, Jiang Wei, Huang Tian-Xuan, Chen Bo-Lun, Pu Yu-Dong, Yan Ji, Chen Zhong-Jing, Zhang Xing, Yang Jia-Min, Jiang Shao-En, Zheng Jian
PDF
导出引用
  • 极向驱动是在间接驱动构型的激光装置中,通过重瞄各束激光的位置,实现较均匀的靶丸表面激光辐照,以研究直接驱动惯性约束聚变的关键物理问题.介绍了神光III主机装置的激光排布和焦斑特点,以及激光束重瞄方法和靶丸表面激光辐照均匀性优化原则.给出了三阶和五阶超高斯近似下的激光焦斑强度分布,540 m靶丸在能量沉积满足cos2和cos 假设时靶丸表面最均匀辐照的移束参数,以及二维辐射流体程序模拟最优移束时的内爆对称性结果.二维模拟结果表明,按cos假设移束的热斑更对称.分析了激光的束间功率不平衡、激光束重瞄精度和靶丸定位精度对靶丸表面辐照均匀性的影响.模拟结果表明,为了不显著降低靶丸表面辐照均匀性,需要将束间功率不平衡控制在5%以内,激光束重瞄精度和靶丸定位精度控制在7 m以内.
    Inertial confinement fusion utilizes sufficient laser beams to directly illuminate a spherical capsule, or convert the laser into thermal X-rays inside a high Z hohlraum to drive capsule implosion. The direct drive implosion is one of ways toward central ignition and similar to the indirect drive implosion, but has higher laser energy coupling efficiency and the potential for higher-gain implosion than indirect drive, and needs stringent laser condition. In order to develop and execute the direct drive experiment on the laser facility, which is configured initially for indirect drive, the polar direct drive has been proposed and validated on the Omega laser facility and the National Ignition Facility. The polar direct drive repoints some of the beams toward the polar and equator of the target, thus increasing the drive energy on the polar and equator of capsule and achieving the most uniform irradiation. The present article focuses on the laser irradiation uniformity of the target in polar direct drive on ShenGuangIII (SGIII) facility. Firstly, the laser beam configuration of the SGIII, the characteristics of laser spots, the laser beam repointing strategy and the principle of optimization are introduced. The 48 laser beams are distributed over four cones per hemisphere and the beam centerlines are repointed in polar direct drive. The continuous phase plates (CPPs) of the SGIII are designed to have unique shape to make the laser beam with a 250 m-radius circular section at the laser entrance hole in indirect drive, and thus the laser beams have ellipse cross sections with fixed major axis and different minor axes in different cones. Then, the irradiation uniformity of 540 m target is optimized by the three-dimensional (3D) view factor method on the assumption that the laser intensity distribution is super-Gaussian with three and five orders, and the energy deposition distributions are expressed as cos2 and cos . The irradiation nonuniformity of less than 5% on the polar direct drive capsule of 540 m in diameter is achieved. The pressure distribution of the hot spot at the neutron bang time with the optimized parameter is also simulated by Multi2D, and the results of 2D hydrodynamics simulation indicate that the hot spot under the assumption of cos distribution is more symmetric. Finally, the effects on irradiation uniformity of the beam-to-beam power imbalance, the repointing error and the target pointing error are estimated by the Monte Carlo method. According to the simulation results, the laser root mean square nonuniformity on the target will not become worse observably when the maximal beam-to-beam power imbalance is limited to a value of 5%, and the repointing error and the target pointing error are better than 7 m.
      通信作者: 余波, yubobnu@163.com
      Corresponding author: Yu Bo, yubobnu@163.com
    [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129

    [2]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901

    [6]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [7]

    Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501

    [8]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [9]

    Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705

    [10]

    Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308

    [11]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304

    [12]

    Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704

    [13]

    Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703

    [14]

    Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306

    [15]

    Moses E I 2008 Fusion Sci. Technol. 54 361

    [16]

    Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310

    [17]

    Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308

    [18]

    Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707

    [19]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [20]

    Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710

    [21]

    Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710

    [22]

    Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]

    [23]

    Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607

    [24]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [25]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [26]

    Basko M 1996 Phys. Plasmas 3 4148

    [27]

    Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003

    [28]

    Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977

  • [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129

    [2]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) p32

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [5]

    Bodner S E, Colombant D G, Gardner J H, Lehmberg R H, Obenschain S P, Phillips L, Schmitt A J, Sethian J D, McCrory R L, Seka W, Verdon C P, Knauer J P, Afeyan B B, Powell H T 1998 Phys. Plasmas 5 1901

    [6]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501

    [7]

    Lindl J, Landen O, Edwards J, Moses E D, NIC Team 2014 Phys. Plasmas 21 020501

    [8]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [9]

    Cok A M, Craxton R S, McKenty P W 2008 Phys. Plasmas 15 082705

    [10]

    Collins T J B, Marozas J A, Anderson K S, Betti R, Craxton R S, Delettrez J A, Goncharov V N, Harding D R, Marshall F J, McCrory R L, Meyerhofer D D, McKenty P W, Radha P B, Shvydky A, Skupsky S, Zuegel J D 2012 Phys. Plasmas 19 056308

    [11]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, McKenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 056304

    [12]

    Radha P B, Marozas J A, Marshall F J, Shvydky A, Collins T J B, Goncharov V N, McCrory R L, McKenty P W, Meyerhofer D D, Sangster T C, Skupsky S 2012 Phys. Plasmas 19 082704

    [13]

    Krasheninnikova N S, Cobble J A, Murphy T J, Tregillis I L, Bradley P A, Hakel P, Hsu S C, Kyrala G A, Obrey K A, Schmitt M J, Baumgaertel J A, Batha S H 2014 Phys. Plasmas 21 042703

    [14]

    Radha P B, Marshall F J, Marozas J A, Shvydky A, Gabalski I, Boehly T R, Collins T J B, Craxton R S, Edgell D H, Epstein R, Frenje R A, Froula D H, Goncharov V N, Hohenberger M, McCrory R L, McKenty P W, Meyerhofer D D, Petrasso R D, Sangster T C, Skupsky S 2013 Phys. Plasmas 20 056306

    [15]

    Moses E I 2008 Fusion Sci. Technol. 54 361

    [16]

    Schmitt M J, Bradley P A, Cobble J A, Fincke J R, Hakel P, Hsu S C, Krasheninnikova N S, Kyrala G A, Magelssen G R, Montgomery D S, Murphy T J, Obrey K A, Shah R C, Tregillis I L, Baumgaertel J A, Wysocki F J, Batha S H, Craxton R S, McKenty P W, Fitzsimmons P, Nikroo A, Wallace R 2013 Phys. Plasmas 20 056310

    [17]

    Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, Regan S P, Seka W, Shvydky A, Sangster T C, Bates J W, Betti R, Boehly T R, Bonino M J, Casey D T, Collins T J B, Craxton R S, Delettrez J A, Edgell D H, Epstein R, Fiksel G, Fitzsimmons P, Frenje J A, Froula D H, Goncharov V N, Harding D R, Kalantar D H, Karasik M, Kessler T J, Kilkenny J D, KnauerJ P, Kurz C, Lafon M, LaFortune K N, MacGowan B J, Mackinnon A J, MacPhee A G, McCrory R L, McKenty P W, Meeker J F, Meyerhofer D D, Nagel S R, Nikroo A, Obenschain S, Petrasso R D, Ralph J E, Rinderknecht H G, Rosenberg M J, Schmitt A J, Wallace R J, Weaver J, Widmayer W, Skupsky S, Solodov A A, Stoeckl C, Yaakobi B, Zuegel J D 2015 Phys. Plasmas 22 056308

    [18]

    Murphy T J, Krasheninnikova N S, Kyrala G A, Bradley P A, Baumgaertel J A, Cobble J A, Hakel P, Hsu S C, Kline J L, Montgomery D S, Obrey K A D, Shah R C, Tregillis I L, Schmitt M J, Kanzleiter R J, Batha S H, Wallace R J, Bhandarkar S D, Fitzsimmons P, Hoppe M L, Nikroo A, Hohenberger M, McKenty P W, Rinderknecht H G, Rosenberg M J, Petrasso R D 2015 Phys. Plasmas 22 092707

    [19]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [20]

    Temporal M, Canaud B, Garbett W J, Ramis R 2014 Phys. Plasmas 21 012710

    [21]

    Ramis R, Temporal M, Canaud B, Brandon V 2014 Phys. Plasmas 21 082710

    [22]

    Deng X W, Zhou W, Yuan Q, Dai W J, Hu D X, Zhu Q H, Jing F 2015 Acta Phys. Sin. 64 195203 (in Chinese) [邓学伟,周维,袁强,代万俊,胡东霞,朱启华,景峰 2015 物理学报 64 195203]

    [23]

    Deng X W, Zhu Q H, Zheng W G, Wei X F, Jing F, Hu D X, Zhou W, Feng B, Wang J J, Peng Z T, Liu L Q, Chen Y B, Ding L, Lin D H, Guo L F, Dang Z 2014 Proc. of SPIE 9266 926607

    [24]

    Schmitt A J 1984 Appl. Phys. Lett. 44 399

    [25]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [26]

    Basko M 1996 Phys. Plasmas 3 4148

    [27]

    Froula D H, Igumenshchev I V, Michel D T, Edgell D H, Follett R, Glebov V Y, Goncharov V N, Kwiatkowski J, Marshall F J, Radha P B, Seka W, Sorce C, Stagnitto S, Stoeckl C, Sangster T C 2012 Phys. Rev. Lett. 108 125003

    [28]

    Ramis R, Meyer-ter-Vehn J, Ramireza J 2009 Comput. Phys. Commun. 180 977

  • [1] 彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云. 重离子辐照导致的碳化硅肖特基势垒二极管损伤机理研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220628
    [2] 罗文, 张飞舟, 张建柱. 激光主动照明均匀性影响因素及其规律的研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220420
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 于家成, 仲佳勇, 安维明, 平永利. 短脉冲强激光驱动磁重联过程的靶后电势分布特征. 物理学报, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [5] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [6] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [7] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [8] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [9] 张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚. 激光驱动磁重联过程中的喷流演化和电子能谱测量. 物理学报, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [10] 江秀娟, 李菁辉, 朱俭, 林尊琪. 基于简单透镜列阵的可调焦激光均匀辐照光学系统研究. 物理学报, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [11] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [12] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [13] 李平, 赵润昌, 王伟, 耿远超, 蒲昱东, 粟敬钦. 神光-Ⅲ原型装置两极驱动的均匀照明研究. 物理学报, 2014, 63(8): 085206. doi: 10.7498/aps.63.085206
    [14] 江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪. 采用透镜列阵与光谱色散改善三倍频小焦斑辐照均匀性. 物理学报, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [15] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] 徐荣青, 王嘉赋, 周青春. 极向Kerr效应对电子自旋交换劈裂的依赖性. 物理学报, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [17] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转. 物理学报, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [18] 张 彬, 吕百达, 肖 峻. 激光间接驱动聚变的光束均匀化方案研究. 物理学报, 1998, 47(12): 1998-2004. doi: 10.7498/aps.47.1998
    [19] 姚杰, 陈宝琼, 王宏楷. 脉冲激光辐照p型硅单晶向n型转化. 物理学报, 1985, 34(1): 117-120. doi: 10.7498/aps.34.117
    [20] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅱ)——湍性等离子体中的共振扩散. 物理学报, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
计量
  • 文章访问数:  2357
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-07-05

神光III主机极向驱动靶丸表面辐照均匀性

  • 1. 中国科学技术大学近代物理系, 合肥 230026;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900;
  • 3. 北京应用物理与计算数学研究所, 北京 100088
  • 通信作者: 余波, yubobnu@163.com

摘要: 极向驱动是在间接驱动构型的激光装置中,通过重瞄各束激光的位置,实现较均匀的靶丸表面激光辐照,以研究直接驱动惯性约束聚变的关键物理问题.介绍了神光III主机装置的激光排布和焦斑特点,以及激光束重瞄方法和靶丸表面激光辐照均匀性优化原则.给出了三阶和五阶超高斯近似下的激光焦斑强度分布,540 m靶丸在能量沉积满足cos2和cos 假设时靶丸表面最均匀辐照的移束参数,以及二维辐射流体程序模拟最优移束时的内爆对称性结果.二维模拟结果表明,按cos假设移束的热斑更对称.分析了激光的束间功率不平衡、激光束重瞄精度和靶丸定位精度对靶丸表面辐照均匀性的影响.模拟结果表明,为了不显著降低靶丸表面辐照均匀性,需要将束间功率不平衡控制在5%以内,激光束重瞄精度和靶丸定位精度控制在7 m以内.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回