搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子相干效应的无芯射频识别标签的空间散射场测量

闫丽云 刘家晟 张好 张临杰 肖连团 贾锁堂

引用本文:
Citation:

基于量子相干效应的无芯射频识别标签的空间散射场测量

闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂

Measurement of backscattered electric field of chipless radio frequency identification tag based on Rydberg atoms

Yan Li-Yun, Liu Jia-Sheng, Zhang Hao, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 基于原子蒸汽池中铯里德伯原子的电磁感应透明光谱在微波场作用下的Aulter-Towns效应,测量了无芯射频识别标签线形散射单元的近场散射微波电场二维空间分布,空间分辨率可达到亚微波波长.实现了射频电场极化方向与线形散射体标签夹角的有效分辨.电磁仿真软件的仿真结果与实验测量符合得很好.本研究提供了一种测量微波电场近场测量的新方法,对无芯射频识别标签的散射单元设计和标定以及电子电路的电磁辐射测量具有重要的意义.
    Chipless radio frequency identification tags have been widely used in many areas, such as vehicle recognition and identification of goods. Near-field measurement of a chipless radio frequency identification tag is important for offering the precise spatial information of the backscattered field of tag. In this paper, we demonstrate the angle discrimination of a line-shape chipless radio-frequency identification tag via the near-field measurements of scattered electric fields in two orthogonal directions. Two laser beams with different frequencies counter propagate and pass through a roomtemperature caesium vapor. A Rydberg ladder-type system is formed in the experiment, which includes three levels, namely 6S1/2, 6P3/2, 51D5/2. The electromagnetically induced transparency of transmission of probe light, which is locked to the transition of 6S1/2↔ 6P3/2, is observed when the frequency of coupling light varies nearby the transition of 6P3/2↔ 51D5/2. When the 5.366 GHz microwave electric field that is resonant with the transition between two adjacent Rydberg states 51D5/2↔ 52P3/2 is applied to the caesium vapor cell by using a standard-gain horn antenna, the transmission signal of probe laser splits into two peaks, which is known as Autler-Townes splitting. The splitting between the transmission peaks is proportional to the microwave electric field strength at the position of laser beam. The spatial distribution of backscattered microwave electric field of the chipless radio-frequency identification tag is obtained through varying the position of the laser beam. The spatial resolution of near-field measurement approximately equals λMW/12, where λMW is the wavelength of the measured microwave electric field. The distributions of the electric field strength in two orthogonal directions show the clarity difference while the angle of radio-frequency identification tag is changed. The scattered electric field strength of the identification tag is strongest when the angle of line-shape tag is the same as that of the polarization of the horn antenna. Moreover, the scattered field strength of identification tag in the incident field direction of the horn antenna increases as the measured position and the identification tag get closer to each other. The scattered electric field distributions in the vertical direction are almost constant at the different angles between the incident electric filed and identification tag. The fluctuation of spatial distribution of the scattered electric field strength is attributed to the Fabry-Pérot effect of microwave electric field in the vapor cell. And the geometry of vapor cell results in the minor asymmetric distribution of scattered field. The simulation results from the electromagnetic simulation software are accordant with the experimental results. The novel approach to near-field measurement of identification tag will contribute to studying and designing the chipless radio-frequency identification tag and complex circuits.
      通信作者: 张临杰, zlj@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA03044200,2016YFF0200104)、国家自然科学基金(批准号:61378013,91536110,61505099)和山西省"1331工程"重点学科建设计划经费资助的课题.
      Corresponding author: Zhang Lin-Jie, zlj@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200, 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 61378013, 91536110, 61505099), and the Fund for Shanxi "1331Project" Key Subjects Construction.
    [1]

    Vena A, Perret E, Tedjini S 2011 IEEE Trans. Microw. Theory Tech. 59 3356

    [2]

    Yan L Y, Zhang W M 2016 J. Test Measur. Technol. 30 62 (in Chinese) [闫丽云, 张文梅 2016 测试技术学报 30 62]

    [3]

    Cown B J, Ryan C J 1989 IEEE Trans. Antennas Propag. 37 576

    [4]

    Wu Y, Xue Z, Ren W, Li W M, Xu X W 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) Shanghai, China, November 6-9, 2012 p72

    [5]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [6]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [7]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p11

    [8]

    Sedlacek J A, Schwettmann A, Kbler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [9]

    Kumar S, Fan H Q, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [11]

    Fan H Q, Kumar S, Daschner R, Kbler H, Shaffer J P 2014 Opt. Lett. 39 3030

    [12]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J 2015 Phys. Rev. Appl. 4 044015

    [13]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [14]

    Anderson D A, Miller S A, Raithel G 2016 Phys. Rev. Appl. 5 034003

    [15]

    Horsley A, Du G X, Treutlein P 2015 New J. Phys. 17 112002

    [16]

    Bohi P, Treutlein P 2012 Appl. Phys. Lett. 101 181107

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Zhou J, Zhang W Q, Hao Y M, Jin T, Jiang X H, Zhang H, Zhang L J 2016 J. Quantum Opt. 22 311 (in Chinese) [周健, 张玮茜, 郝艳梅, 金桐, 蒋徐浩, 张好, 张临杰 2016 量子光学学报 22 311]

    [19]

    Liu J S, Zhang H, Song Z F, Zhang L J, Jia S T 2016 IEEE MTT-S International Conference Beijing, China, July 27-29, 2016 p1

  • [1]

    Vena A, Perret E, Tedjini S 2011 IEEE Trans. Microw. Theory Tech. 59 3356

    [2]

    Yan L Y, Zhang W M 2016 J. Test Measur. Technol. 30 62 (in Chinese) [闫丽云, 张文梅 2016 测试技术学报 30 62]

    [3]

    Cown B J, Ryan C J 1989 IEEE Trans. Antennas Propag. 37 576

    [4]

    Wu Y, Xue Z, Ren W, Li W M, Xu X W 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) Shanghai, China, November 6-9, 2012 p72

    [5]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [6]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [7]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p11

    [8]

    Sedlacek J A, Schwettmann A, Kbler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [9]

    Kumar S, Fan H Q, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [11]

    Fan H Q, Kumar S, Daschner R, Kbler H, Shaffer J P 2014 Opt. Lett. 39 3030

    [12]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J 2015 Phys. Rev. Appl. 4 044015

    [13]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [14]

    Anderson D A, Miller S A, Raithel G 2016 Phys. Rev. Appl. 5 034003

    [15]

    Horsley A, Du G X, Treutlein P 2015 New J. Phys. 17 112002

    [16]

    Bohi P, Treutlein P 2012 Appl. Phys. Lett. 101 181107

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Zhou J, Zhang W Q, Hao Y M, Jin T, Jiang X H, Zhang H, Zhang L J 2016 J. Quantum Opt. 22 311 (in Chinese) [周健, 张玮茜, 郝艳梅, 金桐, 蒋徐浩, 张好, 张临杰 2016 量子光学学报 22 311]

    [19]

    Liu J S, Zhang H, Song Z F, Zhang L J, Jia S T 2016 IEEE MTT-S International Conference Beijing, China, July 27-29, 2016 p1

  • [1] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [2] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [6] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [8] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [9] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [10] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [11] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [12] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [13] 王丽, 卢成. 四能级原子系统中非线性电磁感应吸收的理论研究. 物理学报, 2011, 60(4): 044203. doi: 10.7498/aps.60.044203
    [14] 王丽, 李根全, 肖绍武, 郑长波. 四能级原子系统中电磁感应吸收的相位控制. 物理学报, 2010, 59(12): 8512-8517. doi: 10.7498/aps.59.8512
    [15] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [16] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 物理学报, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [17] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, 1988, 37(6): 983-988. doi: 10.7498/aps.37.983
计量
  • 文章访问数:  2453
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-16
  • 修回日期:  2017-09-20
  • 刊出日期:  2017-12-05

基于量子相干效应的无芯射频识别标签的空间散射场测量

  • 1. 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学物理电子工程学院, 太原 030006;
  • 3. 极端光学协同创新中心, 太原 030006
  • 通信作者: 张临杰, zlj@sxu.edu.cn
    基金项目: 国家重点研发计划(批准号:2017YFA03044200,2016YFF0200104)、国家自然科学基金(批准号:61378013,91536110,61505099)和山西省"1331工程"重点学科建设计划经费资助的课题.

摘要: 基于原子蒸汽池中铯里德伯原子的电磁感应透明光谱在微波场作用下的Aulter-Towns效应,测量了无芯射频识别标签线形散射单元的近场散射微波电场二维空间分布,空间分辨率可达到亚微波波长.实现了射频电场极化方向与线形散射体标签夹角的有效分辨.电磁仿真软件的仿真结果与实验测量符合得很好.本研究提供了一种测量微波电场近场测量的新方法,对无芯射频识别标签的散射单元设计和标定以及电子电路的电磁辐射测量具有重要的意义.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回