搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷原子D1线真空压缩光场的产生及态重构

李淑静 张娜娜 闫红梅 徐忠孝 王海

引用本文:
Citation:

铷原子D1线真空压缩光场的产生及态重构

李淑静, 张娜娜, 闫红梅, 徐忠孝, 王海

Generation and quantum state reconstruction of a squeezed vacuum light field resonant on the rubidium D1 line

Li Shu-Jing, Zhang Na-Na, Yan Hong-Mei, Xu Zhong-Xiao, Wang Hai
PDF
导出引用
  • 碱金属原子是光量子存储的良好介质,与碱金属原子共振的非经典光场是量子信息处理的重要资源.本文采用周期极化磷酸氧钛晶体作为非线性介质,利用参量振荡过程产生了795 nm (铷原子D1线)的真空压缩光场.通过对平衡零拍探测系统的时域信号进行采集,得到压缩光场不同相位角下的噪声分布;利用极大似然估计法对压缩光场进行了态重构,得到了密度矩阵及相空间的Wigner函数.理论计算了真空压缩场的光子数分布和Wigner函数,并对理论计算结果和极大似然重构结果进行了分析和比较.
    The squeezed light field is a kind of important continuous variable quantum resource.It has wide applications in precision measurement and quantum information processing.Quantum storage is the foundations of quantum repeater and long distance quantum communication,and alkali metal atoms are an ideal quantum storage medium due to long ground state coherent time. With the rapid development of quantum storage technology in atomic medium,the preparation of the squeezed light which resonates with alkali metal atoms has become one of the research hotspots in the field of quantum information.In this paper,we report the generation of squeezed vacuum at 795 nm (resonant on the rubidium D1 transition line) by using an optical parametric oscillation based on a periodically poled KTiOPO4 crystal. The generated squeezed light field is detected by a balanced homodyne detector,and the squeezing of-3 dB and anti-squeezing of 5.8 dB are observed at a pump power of 45 mW.By using a maximum likelihood estimation,the density matrix of the squeezed light field is reconstructed.The time-domain signals from the balanced homodyne detector are collected to acquire the noise distribution of the squeezed light under different phase angles.The likelihood function is established for the measured quadrature components.An identity matrix is chosen as an initial density matrix,and the density matrix of the squeezed field is obtained through an iterative algorithm.The diagonal elements of the density matrix denote the photon number distribution,which includes not only even photon number states but also odd photon number states.The occurrence of odd photon number states mainly comes from the system losses and the imperfect quantum efficiency of detector.The Wigner function in phase space is calculated through the density matrix,and the maximum value of the Wigner function is 0.309.The standard deviation of the squeezed component is 64.4% of that of the vacuum state,corresponding to the squeezing degree of-3.8 dB.The standard deviation of the anti-squeezing component is 1.64 times that of the vacuum state,corresponding to the anti-squeezing degree of 4.3 dB.We theoretically calculate the photon number distribution and the Wigner function of the vacuum squeezed field,and compare the results obtained by theoretical calculation with those obtained by maximum likelihood reconstruction.The probability of vacuum state|0 obtained by maximum likelihood reconstruction is greater,and the probability of photon number state|n(n=1,2,) is smaller than the corresponding theoretical calculation results.From the theoretical calculation,the maximum value of Wigner function is 0.231,and the short axis and long axis of noise range deduced from the contours of the Wigner function are larger than the results from the maximum likelihood reconstruction.The possible reasons for the discrepancy are as follows. 1) The phase scanning is nonuniform during the measurement of the quadrature components.2) The low-frequency electronic noise is not completely filtered out in the datum acquisition process.3) The datum points of measured quadrature components are not enough.In conclusion,we produce a vacuum squeezed field of 795 nm,and obtain the photon number distribution and the Wigner function in phase space through maximum likelihood estimation and theoretical calculation,respectively.This work will provide an experimental basis for generating the Schrodinger cat state.
      通信作者: 王海, wanghai@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11475109,11274211,11604191)和山西省1331工程重点学科建设计划资助的课题.
      Corresponding author: Wang Hai, wanghai@sxu.edu.cn
    • Funds: Project supported by the Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211, 11604191), and the Fund for Shanxi 1331Project Key Subjects Construction, China.
    [1]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229

    [2]

    Eberle T, Steinlechner S, Bauchrowitz J, Hndchen V, Vahlbruch H, Mehmet M, Mller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102

    [3]

    Pooser R C, Lwrie B 2015 Optica 2 393

    [4]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [5]

    Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [6]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [7]

    Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501

    [8]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [9]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [10]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [11]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [12]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [13]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [14]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930

    [15]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350

    [16]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [17]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777

    [18]

    Mikhailov E E, Novikova I 2008 Opt. Lett. 33 1213

    [19]

    Ries J, Brezger B, Lvovsky A I 2003 Phys. Rev. A 68 025801

    [20]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851

    [21]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [22]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valleys J F 1985 Phys. Rev. Lett. 55 2409

    [23]

    Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818

    [24]

    Wen F, Li Z P, Zhang Y Q, Gao H, Che J L, Abdulkhaleq H, Zhang Y P, Wang H X 2016 Sci. Rep. 6 25554

    [25]

    Tanimura T, Akamatsu D, Yokoi Y 2006 Opt. Lett. 31 2344

    [26]

    Htet G, Glckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221

    [27]

    Vogel K, Risken H 1989 Phys. Rev. A 40 R2847

    [28]

    Beck M, Smithey D T, Raymer M G 1993 Phys. Rev. A 48 R890

    [29]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159

    [30]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299

    [31]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556

    [32]

    Drever R W P, Hall J L, Kowaiski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [33]

    Boulanger B, Rousseau I, Fve J P, Maglione M, Mnaert B, Marnier G 1999 IEEE J. Quantum Electron. 35 281

  • [1]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229

    [2]

    Eberle T, Steinlechner S, Bauchrowitz J, Hndchen V, Vahlbruch H, Mehmet M, Mller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102

    [3]

    Pooser R C, Lwrie B 2015 Optica 2 393

    [4]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [5]

    Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [6]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [7]

    Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501

    [8]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [9]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [10]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601

    [11]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [12]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [13]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [14]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930

    [15]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350

    [16]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [17]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777

    [18]

    Mikhailov E E, Novikova I 2008 Opt. Lett. 33 1213

    [19]

    Ries J, Brezger B, Lvovsky A I 2003 Phys. Rev. A 68 025801

    [20]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851

    [21]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [22]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valleys J F 1985 Phys. Rev. Lett. 55 2409

    [23]

    Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818

    [24]

    Wen F, Li Z P, Zhang Y Q, Gao H, Che J L, Abdulkhaleq H, Zhang Y P, Wang H X 2016 Sci. Rep. 6 25554

    [25]

    Tanimura T, Akamatsu D, Yokoi Y 2006 Opt. Lett. 31 2344

    [26]

    Htet G, Glckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221

    [27]

    Vogel K, Risken H 1989 Phys. Rev. A 40 R2847

    [28]

    Beck M, Smithey D T, Raymer M G 1993 Phys. Rev. A 48 R890

    [29]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159

    [30]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299

    [31]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556

    [32]

    Drever R W P, Hall J L, Kowaiski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [33]

    Boulanger B, Rousseau I, Fve J P, Maglione M, Mnaert B, Marnier G 1999 IEEE J. Quantum Electron. 35 281

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [3] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [4] 郭力仁, 胡以华, 王云鹏, 徐世龙. 基于最大似然的单通道交叠激光微多普勒信号参数分离估计. 物理学报, 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [5] 任子良, 秦勇, 黄锦旺, 赵智, 冯久超. 基于广义似然比判决的混沌信号重构方法. 物理学报, 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [6] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [7] 陈坤, 陈树新, 吴德伟, 杨春燕, 王希, 李响, 吴昊, 刘卓崴. 相干态和压缩真空态的自适应最优估计方法. 物理学报, 2016, 65(19): 194203. doi: 10.7498/aps.65.194203
    [8] 孙志妮, 冯晋霞, 万振菊, 张宽收. 1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构. 物理学报, 2016, 65(4): 044203. doi: 10.7498/aps.65.044203
    [9] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法. 物理学报, 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [10] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [11] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构. 物理学报, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [12] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场. 物理学报, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [13] 李 莹, 罗 玉, 潘 庆, 彭堃墀. 用外腔谐振倍频产生明亮绿光振幅压缩态光场. 物理学报, 2006, 55(10): 5030-5035. doi: 10.7498/aps.55.5030
    [14] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [15] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [16] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [17] 冯勋立, 何林生. 两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化. 物理学报, 1997, 46(10): 1926-1931. doi: 10.7498/aps.46.1926
    [18] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
    [19] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [20] 张卫平, 谭维翰. 激光腔内压缩态光的产生. 物理学报, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
计量
  • 文章访问数:  3909
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-07
  • 修回日期:  2018-02-10
  • 刊出日期:  2018-05-05

铷原子D1线真空压缩光场的产生及态重构

  • 1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学, 极端光学协同创新中心, 太原 030006
  • 通信作者: 王海, wanghai@sxu.edu.cn
    基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:11475109,11274211,11604191)和山西省1331工程重点学科建设计划资助的课题.

摘要: 碱金属原子是光量子存储的良好介质,与碱金属原子共振的非经典光场是量子信息处理的重要资源.本文采用周期极化磷酸氧钛晶体作为非线性介质,利用参量振荡过程产生了795 nm (铷原子D1线)的真空压缩光场.通过对平衡零拍探测系统的时域信号进行采集,得到压缩光场不同相位角下的噪声分布;利用极大似然估计法对压缩光场进行了态重构,得到了密度矩阵及相空间的Wigner函数.理论计算了真空压缩场的光子数分布和Wigner函数,并对理论计算结果和极大似然重构结果进行了分析和比较.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回