搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高分辨率电子能量损失谱仪与表面元激发研究

朱学涛 郭建东

引用本文:
Citation:

新型高分辨率电子能量损失谱仪与表面元激发研究

朱学涛, 郭建东

Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations

Zhu Xue-Tao, Guo Jian-Dong
PDF
导出引用
  • 高分辨率电子能量损失谱仪利用单色平行电子束入射样品表面,与表面吸附基团的化学键振动、表面声子、电子及其集体激发模式等相互作用而被散射,通过分析散射电子的能量和动量,可以测量表面化学键、晶格动力学、电子态占据以及表面等离激元等的精确信息,是表面科学研究的有力工具.最近,能够对电子能量、动量做二维成像探测分析的半球形电子能量分析器被引入电子能量损失谱仪,实现了高能量、动量分辨率的高效率测量.在对FeSe/SrTiO3界面超导增强物理机制的研究中,不同厚度的FeSe膜表面的电子能量损失谱表明衬底光学声子产生的偶极电场能够穿透到薄膜内部,诱导较强的电子-声子耦合作用,从而增强薄膜中电子的配对作用,进而使超导转变温度显著提高.三维拓扑绝缘体Bi2Se3表面大动量范围的电子能量损失谱还显示出一支奇异的电子集体激发模式,其色散特征不受晶格周期性的限制,而且其寿命和强度几乎不随动量的增加而衰减.这说明在拓扑绝缘体表面,不仅是狄拉克电子态本身,其集体激发也受到拓扑保护.充分发挥新型电子能量损失谱仪观测表面元激发分辨率高、动态范围大的优势,将有力地推动表面界面凝聚态物理问题研究的深入和发展.
    High-resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at solid surfaces. A monochromatic electron beam incident on the crystal surface may interact with the vibrations of adsorbed molecules, surface phonons or electronic excitations before being back-scattered. By analyzing the energy and momentum of the scattered electrons, we can obtain the information about the chemical bonds, lattice dynamics, occupation of electronic states, and surface plasmons. However the application of traditional HREELS to dispersion analyses is restricted by its point-by-point measurement of the energy loss spectrum for each momentum. Recently, a new strategy for HREELS was realized by utilizing a specially designed lens system with a double-cylindrical monochromator combined with a commercial Scienta hemispherical electron energy analyzer, which can be used to simultaneously measure the energy and momentum of the scattered electrons. The new system possesses improved momentum resolution, high detecting efficiency and high sampling density with no loss in energy resolution. The new HREELS system was employed to study the mechanism of the superconductivity enhancement at FeSe/SrTiO3 interface. By surface phonon measurements on samples with different film thickness, it is revealed that the electric field associated with phonon modes of SrTiO3 substrate can penetrate into FeSe film and interact with the electrons therein, playing the key role in the superconductivity enhancement. The surface collective modes of three-dimensional topological insulator was also studied by using this new HREELS system. A highly unusual acoustic plasmon mode is revealed on the surface of a typical three-dimensional topological insulator Bi2Se3. This mode exhibits an almost linear dispersion to the second Brouillion zone center without reflecting lattice periodicity, and it remains prominent over a large momentum range, with unusually weak damping unseen in any other system. This observation indicates that the topological protection exists not only in single-particle topological states but also in their collective excitations. The application of the new HREELS system with the ability to measure large momentum range with high-efficiency, will definitely promote the development of related researches on condensed matter physics.
      通信作者: 郭建东, jdguo@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0303600,2016YFA0302400,2016YFA0202300)、国家自然科学基金(批准号:11634016,11474334)和中国科学院战略性先导科技专项(B类)(批准号:XDB07030100)资助的课题.
      Corresponding author: Guo Jian-Dong, jdguo@iphy.ac.cn
    • Funds: Project supported by the National Key Research Development Program of China (Grant Nos. 2017YFA0303600, 2016YFA0302400, 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 11634016, 11474334), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07030100).
    [1]

    Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26

    [2]

    Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529

    [3]

    Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20

    [4]

    Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402

    [5]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314

    [6]

    Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902

    [7]

    Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2

    [10]

    Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146

    [11]

    Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [13]

    Bozovic I, Ahn C 2014 Nat. Phys. 10 892

    [14]

    Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001

    [15]

    Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001

    [16]

    Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311

    [17]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42

    [18]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [19]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986

    [20]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [21]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840

    [22]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [23]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [24]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [25]

    Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510

    [26]

    Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603

    [27]

    Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001

    [28]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002

    [29]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [30]

    Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408

    [31]

    Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508

    [32]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116

    [33]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [34]

    Pines D, Bohm D 1952 Phys. Rev. 85 338

    [35]

    Ritchie R H 1957 Phys. Rev. 106 874

    [36]

    Landau L 1957 Soviet Physics Jetp-Ussr 3 920

    [37]

    Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)

    [38]

    Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209

    [39]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [40]

    Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106

    [41]

    Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803

    [42]

    Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412

    [43]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [44]

    Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402

    [45]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556

    [46]

    Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231

    [47]

    Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802

    [48]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054

    [49]

    Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804

    [50]

    Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805

    [51]

    Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102

    [52]

    Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501

  • [1]

    Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26

    [2]

    Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529

    [3]

    Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20

    [4]

    Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402

    [5]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314

    [6]

    Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902

    [7]

    Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2

    [10]

    Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146

    [11]

    Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [13]

    Bozovic I, Ahn C 2014 Nat. Phys. 10 892

    [14]

    Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001

    [15]

    Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001

    [16]

    Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311

    [17]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42

    [18]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [19]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986

    [20]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [21]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840

    [22]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [23]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [24]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [25]

    Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510

    [26]

    Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603

    [27]

    Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001

    [28]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002

    [29]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [30]

    Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408

    [31]

    Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508

    [32]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116

    [33]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [34]

    Pines D, Bohm D 1952 Phys. Rev. 85 338

    [35]

    Ritchie R H 1957 Phys. Rev. 106 874

    [36]

    Landau L 1957 Soviet Physics Jetp-Ussr 3 920

    [37]

    Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)

    [38]

    Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209

    [39]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [40]

    Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106

    [41]

    Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803

    [42]

    Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412

    [43]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [44]

    Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402

    [45]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556

    [46]

    Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231

    [47]

    Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802

    [48]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054

    [49]

    Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804

    [50]

    Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805

    [51]

    Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102

    [52]

    Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501

  • [1] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟. 物理学报, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [2] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [5] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [9] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [10] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [11] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [12] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [13] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [14] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [17] 王孟舟, 姜永恒, 刘天元, 孙成林, 里佐威. 络合物形成对电子-声子耦合的影响. 物理学报, 2013, 62(18): 187802. doi: 10.7498/aps.62.187802
    [18] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [19] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [20] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
计量
  • 文章访问数:  7314
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-04-23
  • 刊出日期:  2019-06-20

/

返回文章
返回