搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近距离牛顿反平方定律实验检验进展

谭文海 王建波 邵成刚 涂良成 杨山清 罗鹏顺 罗俊

引用本文:
Citation:

近距离牛顿反平方定律实验检验进展

谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊

Recent progress in testing Newtonian inverse square law at short range

Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun
PDF
导出引用
  • 为了统一描述自然界的四种基本相互作用,科学家提出了很多理论模型,其中很多理论认为牛顿反平方定律在近距离下会发生偏离,或存在其他的非牛顿引力作用,而理论的正确与否需要高精度的实验检验.国际上很多研究组在不同间距下采用不同的技术对反平方定律进行了高精度的实验检验,本文重点介绍华中科技大学引力中心采用密度调制法分别在亚毫米与微米范围进行的实验研究进展.在亚毫米范围采用精密扭秤技术,在对牛顿引力进行双补偿、抑制电磁干扰后,结合零实验与非零实验结果,在作用程为70–300 μm区间对Yukawa形式的破缺给出国际上精度最高的限制.在微米范围采用悬臂梁作为弱力传感器,通过测量金球和密度调制吸引质量间水平力的变化来检验非牛顿引力是否存在,实验结果不需进行Casimir力和静电力背景扣除,是此间距下不依赖于Casimir力和静电力理论计算模型的两个结果之一.
    Many theoretical speculations assume that the Newtonian inverse square law (ISL) needs to be modified in short range, such as the modifications due to gravitation propagating in extra dimensions and the hypothetical interactions mediated by bosons predicted by the physics beyond the standard model. High precision tests of the non-Newtonian gravitational forces are important for verifying the proposed models and help us to further understand gravity. Scientists have performed many tests in different interaction ranges by using different techniques and have not find any nonNewtonian gravitational force up to now. Adopting a gap modulation scheme, the experimental group in Huazhong University of Science and Technology had accomplished the tests of ISL in the millimeter and submillimeter range with torsional balance. The experiment in the millimeter range set the strongest constraints on the Yukawa-type violation from ISL. Recently, they have conducted two other tests in the submillimeter and micrometer range by modulating the density of the source attractor. In the submillimeter range, torsional balance is used to measure the torque acting on the pendulum by a rotating density modulated source attractor. The Newtonian gravitational torque at the frequency of interest is suppressed below the thermal noise of the pendulum by a dual compensation design, whereas the nonNewtonian gravitational torque is preserved if it exists, so that a “Null” test can be realized. The experimental system is verified by comparing the theoretical torque with the measured one when intentionally shifting the attractor away from the position for “Null” test. The strongest constraints on the Yukawa-type violation are achieved in a range of 70-300 μm in this experiment. In the micrometer range, an isoelectronic test of the non-Newtonian forces is performed by sensing the lateral force between a gold sphere and a density modulated source attractor by using a soft cantilever. The attractor is fabricated based on silicon-on-insulator wafer to make its surface isoelectronic and possess a density modulated structure underneath. Two-dimensional (2D) mapping of the force signal indicates that the experimental sensitivity is mainly limited by the electrostatic force arising from the surface patch charges. We analyze the 2D mapping data by using maximum likelihood estimation method and set constraints on the Yukawa-type non-Newtonian gravitational forces without subtracting the model-dependent Casimir force or electrostatic force background. Both experiments show no sign of the non-Newtonian gravitational force, and further experiments with high precision are required to explore the unconstrained parameter space.
    [1]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [2]

    Touboul P, Métris G, Rodrigues M, André Y, Baghi Q, Bergé J, Boulanger D, Bremer S, Carle P, Chhun R, Christophe B, Cipolla V, Damour T, Danto P, Dittus H, Fayet P, Foulon B, Gageant C, Guidotti P Y, Hagedorn D, Hardy E, Huynh P A, Inchauspe H, Kayser P, Lala S, Lämmerzahl C, Lebat V, Leseur P, Liorzou F, List M, Löffler F, Panet I, Pouilloux B, Prieur P, Rebray A, Reynaud S, Rievers B, Robert A, Selig H, Serron L, Sumner T, Tanguy N, Visser P 2017 Phys. Rev. Lett. 119 231101

    [3]

    Arkani-Hamed N, Dimopoulos S, Dvali G 1998 Phys. Lett. B 429 263

    [4]

    Arkani-Hamed N, Dimopoulos S, Dvali G 1999 Phys. Rev. D 59 086004

    [5]

    Adelberger E G, Heckel B R, Nelson A E 2003 Annu. Rev. Nucl. Part. Sci. 53 77

    [6]

    Beane S R 1997 Gen. Relativ. Gravit. 29 945

    [7]

    Riess A G, Filippenko A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B, Tonry J 1998 Astron. J. 116 1009

    [8]

    Antoniadis I, Arkani-Hamed N, Dimopoulos S, Dvali G 1998 Phys. Lett. B 436 257

    [9]

    Hoyle C D, Kapner D J, Heckel B R, Adelberger E G, Gundlach J H, Schmidt U, Swanson H E 2004 Phys. Rev. D 70 042004

    [10]

    Dimopoulos S, Giudice G F 1996 Phys. Lett. B 379 105

    [11]

    Kaplan D B, Wise M B 2000 J. High Energy Phys. 2000 037

    [12]

    Antoniadis I, Dimopoulos S, Dvali G 1998 Nucl. Phys. B 516 70

    [13]

    Moody J E, Wilczek F 1984 Phys. Rev. D 30 130

    [14]

    Mackenzie A S 1895 Phys. Rev. Ser. I 2 321

    [15]

    Long D R 1974 Phys. Rev. D 9 850

    [16]

    Long D R 1976 Nature 260 417

    [17]

    Chen Y T, Cook A H, Metherell A J F 1984 Proc. R. Soc. Lond. Math. Phys. Sci. 394 47

    [18]

    Spero R, Hoskins J K, Newman R, Pellam J, Schultz J 1980 Phys. Rev. Lett. 44 1645

    [19]

    Hoskins J K, Newman R D, Spero R, Schultz J 1985 Phys. Rev. D 32 3084

    [20]

    Kapner D J, Cook T S, Adelberger E G, Gundlach J H, Heckel B R, Hoyle C D, Swanson H E 2007 Phys. Rev. Lett. 98 021101

    [21]

    Tu L C, Guan S G, Luo J, Shao C G, Liu L X 2007 Phys. Rev. Lett. 98 201101

    [22]

    Yang S Q, Zhan B F, Wang Q L, Shao C G, Tu L C, Tan W H, Luo J 2012 Phys. Rev. Lett. 108 081101

    [23]

    Tan W H, Yang S Q, Shao C G, Li J, Du A B, Zhan B F, Wang Q L, Luo P S, Tu L C, Luo J 2016 Phys. Rev. Lett. 116 131101

    [24]

    Long J C, Chan H W, Churnside A B, Gulbis E A, Varney M C M, Price J C 2003 Nature 421 922

    [25]

    Bordag M, Mohideen U, Mostepanenko V M 2001 Phys. Rep. 353 1

    [26]

    Decca R S, López D, Chan H B, Fischbach E, Krause D E, Jamell C R 2005 Phys. Rev. Lett. 94 240401

    [27]

    Geraci A A, Smullin S J, Weld D M, Chiaverini J, Kapitulnik A 2008 Phys. Rev. D 78 022002

    [28]

    Decca R S, López D, Fischbach E, Klimchitskaya G L, Krause D E, Mostepanenko V M 2007 Phys. Rev. D 75 077101

    [29]

    Chen Y J, Tham W K, Krause D E, López D, Fischbach E, Decca R S 2016 Phys. Rev. Lett. 116 221102

    [30]

    Wang J B, Guan S G, Chen K, Wu W J, Tian Z Y, Luo P S, Jin A Z, Yang S Q, Shao C G, Luo J 2016 Phys. Rev. D 94 122005

    [31]

    Sushkov A O, Kim W J, Dalvit D A R, Lamoreaux S K 2011 Phys. Rev. Lett. 107 171101

    [32]

    Masuda M, Sasaki M 2009 Phys. Rev. Lett. 102 171101

    [33]

    Kamiya Y, Itagaki K, Tani M, Kim G N, Komamiya S 2015 Phys. Rev. Lett. 114 161101

    [34]

    Nesvizhevsky V V, Protasov K V 2004 Class. Quantum Gravity 21 4557

    [35]

    Greene G L, Gudkov V 2007 Phys. Rev. C 75 015501

    [36]

    Pokotilovski Y N 2006 Phys. At. Nucl. 69 924

    [37]

    Nesvizhevsky V V, Pignol G, Protasov K V 2008 Phys. Rev. D 77 034020

    [38]

    Xu J, Li B A, Chen L W, Zheng H 2013 J. Phys. G: Nucl. Part. Phys. 40 035107

    [39]

    Moody M V, Paik H J 1993 Phys. Rev. Lett. 70 1195

    [40]

    Cornaz A, Hubler B, Kündig W 1994 Phys. Rev. Lett. 72 1152

    [41]

    Romaides A J, Sands R W, Fischbach E, Talmadge C L 1997 Phys. Rev. D 55 4532

    [42]

    Speake C C, Niebauer T M, McHugh M P, Keyser P T, Faller J E, Cruz J Y, Harrison J C, Mäkinen J, Beruff R B 1990 Phys. Rev. Lett. 65 1967

    [43]

    Shirata A, Shiromizu T, Yoshida N, Suto Y 2005 Phys. Rev. D 71 064030

    [44]

    Adelberger E G, Heckel B R, Nelson A E 2003 Annu. Rev. Nucl. Part. Sci. 53 77

    [45]

    Newman R D, Berg E C, Boynton P E 2009 Space Sci. Rev. 148 175

    [46]

    Long J C, Price J C 2003 Comptes Rendus Phys. 4 337

    [47]

    Adelberger E G, Gundlach J H, Heckel B R, Hoedl S, Schlamminger S 2009 Prog. Part. Nucl. Phys. 62 102

    [48]

    Spero R, Hoskins J K, Newman R, Pellam J, Schultz J 1980 Phys. Rev. Lett. 44 1645

    [49]

    Long D R 1980 IL Nuovo Cimento B (1971-1996) 55 252

    [50]

    Yan H, Housworth E A, Meyer H O, Visser G, Weisman E, Long J C 2014 Class. Quantum Gravity 31 205007

    [51]

    Chiaverini J, Smullin S J, Geraci A A, Weld D M, Kapitulnik A 2003 Phys. Rev. Lett. 90 151101

    [52]

    Weld D, Xia J, Cabrera B, Kapitulnik A 2008 Phys. Rev. D 77 062006

    [53]

    Kim W J, Sushkov A O, Dalvit D A R, Lamoreaux S K 2009 Phys. Rev. Lett. 103 060401

    [54]

    Harris B W, Chen F, Mohideen U 2000 Phys. Rev. A 62 052109

    [55]

    Tan W H 2016 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[谭文海 2016 博士学位论文 (武汉:华中科技大学)]

    [56]

    Yin H, Bai Y Z, Hu M, Liu L, Luo J, Tan D Y, Yeh H C, Zhou Z B 2014 Phys. Rev. D 90 122001

    [57]

    Saulson P R 1990 Phys. Rev. D 42 2437

    [58]

    Pollack S, Schlamminger S, Gundlach J H 2008 Phys. Rev. Lett. 101 071101

    [59]

    Behunin R O, Dalvit D A R, Decca R S, Speake C C 2014 Phys. Rev. D 89 051301

    [60]

    Klimchitskaya G L, Mohideen U, Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827

    [61]

    Wang J B 2017 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[王建波 2017 博士学位论文 (武汉:华中科技大学)]

    [62]

    Hoogenboom B W, Frederix P L T M, Yang J L, Martin S, Pellmont Y, Steinacher M, Zäch S, Langenbach E, Heimbeck H J, Engel A, Hug H J 2005 Appl. Phys. Lett. 86 074101

  • [1]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [2]

    Touboul P, Métris G, Rodrigues M, André Y, Baghi Q, Bergé J, Boulanger D, Bremer S, Carle P, Chhun R, Christophe B, Cipolla V, Damour T, Danto P, Dittus H, Fayet P, Foulon B, Gageant C, Guidotti P Y, Hagedorn D, Hardy E, Huynh P A, Inchauspe H, Kayser P, Lala S, Lämmerzahl C, Lebat V, Leseur P, Liorzou F, List M, Löffler F, Panet I, Pouilloux B, Prieur P, Rebray A, Reynaud S, Rievers B, Robert A, Selig H, Serron L, Sumner T, Tanguy N, Visser P 2017 Phys. Rev. Lett. 119 231101

    [3]

    Arkani-Hamed N, Dimopoulos S, Dvali G 1998 Phys. Lett. B 429 263

    [4]

    Arkani-Hamed N, Dimopoulos S, Dvali G 1999 Phys. Rev. D 59 086004

    [5]

    Adelberger E G, Heckel B R, Nelson A E 2003 Annu. Rev. Nucl. Part. Sci. 53 77

    [6]

    Beane S R 1997 Gen. Relativ. Gravit. 29 945

    [7]

    Riess A G, Filippenko A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B, Tonry J 1998 Astron. J. 116 1009

    [8]

    Antoniadis I, Arkani-Hamed N, Dimopoulos S, Dvali G 1998 Phys. Lett. B 436 257

    [9]

    Hoyle C D, Kapner D J, Heckel B R, Adelberger E G, Gundlach J H, Schmidt U, Swanson H E 2004 Phys. Rev. D 70 042004

    [10]

    Dimopoulos S, Giudice G F 1996 Phys. Lett. B 379 105

    [11]

    Kaplan D B, Wise M B 2000 J. High Energy Phys. 2000 037

    [12]

    Antoniadis I, Dimopoulos S, Dvali G 1998 Nucl. Phys. B 516 70

    [13]

    Moody J E, Wilczek F 1984 Phys. Rev. D 30 130

    [14]

    Mackenzie A S 1895 Phys. Rev. Ser. I 2 321

    [15]

    Long D R 1974 Phys. Rev. D 9 850

    [16]

    Long D R 1976 Nature 260 417

    [17]

    Chen Y T, Cook A H, Metherell A J F 1984 Proc. R. Soc. Lond. Math. Phys. Sci. 394 47

    [18]

    Spero R, Hoskins J K, Newman R, Pellam J, Schultz J 1980 Phys. Rev. Lett. 44 1645

    [19]

    Hoskins J K, Newman R D, Spero R, Schultz J 1985 Phys. Rev. D 32 3084

    [20]

    Kapner D J, Cook T S, Adelberger E G, Gundlach J H, Heckel B R, Hoyle C D, Swanson H E 2007 Phys. Rev. Lett. 98 021101

    [21]

    Tu L C, Guan S G, Luo J, Shao C G, Liu L X 2007 Phys. Rev. Lett. 98 201101

    [22]

    Yang S Q, Zhan B F, Wang Q L, Shao C G, Tu L C, Tan W H, Luo J 2012 Phys. Rev. Lett. 108 081101

    [23]

    Tan W H, Yang S Q, Shao C G, Li J, Du A B, Zhan B F, Wang Q L, Luo P S, Tu L C, Luo J 2016 Phys. Rev. Lett. 116 131101

    [24]

    Long J C, Chan H W, Churnside A B, Gulbis E A, Varney M C M, Price J C 2003 Nature 421 922

    [25]

    Bordag M, Mohideen U, Mostepanenko V M 2001 Phys. Rep. 353 1

    [26]

    Decca R S, López D, Chan H B, Fischbach E, Krause D E, Jamell C R 2005 Phys. Rev. Lett. 94 240401

    [27]

    Geraci A A, Smullin S J, Weld D M, Chiaverini J, Kapitulnik A 2008 Phys. Rev. D 78 022002

    [28]

    Decca R S, López D, Fischbach E, Klimchitskaya G L, Krause D E, Mostepanenko V M 2007 Phys. Rev. D 75 077101

    [29]

    Chen Y J, Tham W K, Krause D E, López D, Fischbach E, Decca R S 2016 Phys. Rev. Lett. 116 221102

    [30]

    Wang J B, Guan S G, Chen K, Wu W J, Tian Z Y, Luo P S, Jin A Z, Yang S Q, Shao C G, Luo J 2016 Phys. Rev. D 94 122005

    [31]

    Sushkov A O, Kim W J, Dalvit D A R, Lamoreaux S K 2011 Phys. Rev. Lett. 107 171101

    [32]

    Masuda M, Sasaki M 2009 Phys. Rev. Lett. 102 171101

    [33]

    Kamiya Y, Itagaki K, Tani M, Kim G N, Komamiya S 2015 Phys. Rev. Lett. 114 161101

    [34]

    Nesvizhevsky V V, Protasov K V 2004 Class. Quantum Gravity 21 4557

    [35]

    Greene G L, Gudkov V 2007 Phys. Rev. C 75 015501

    [36]

    Pokotilovski Y N 2006 Phys. At. Nucl. 69 924

    [37]

    Nesvizhevsky V V, Pignol G, Protasov K V 2008 Phys. Rev. D 77 034020

    [38]

    Xu J, Li B A, Chen L W, Zheng H 2013 J. Phys. G: Nucl. Part. Phys. 40 035107

    [39]

    Moody M V, Paik H J 1993 Phys. Rev. Lett. 70 1195

    [40]

    Cornaz A, Hubler B, Kündig W 1994 Phys. Rev. Lett. 72 1152

    [41]

    Romaides A J, Sands R W, Fischbach E, Talmadge C L 1997 Phys. Rev. D 55 4532

    [42]

    Speake C C, Niebauer T M, McHugh M P, Keyser P T, Faller J E, Cruz J Y, Harrison J C, Mäkinen J, Beruff R B 1990 Phys. Rev. Lett. 65 1967

    [43]

    Shirata A, Shiromizu T, Yoshida N, Suto Y 2005 Phys. Rev. D 71 064030

    [44]

    Adelberger E G, Heckel B R, Nelson A E 2003 Annu. Rev. Nucl. Part. Sci. 53 77

    [45]

    Newman R D, Berg E C, Boynton P E 2009 Space Sci. Rev. 148 175

    [46]

    Long J C, Price J C 2003 Comptes Rendus Phys. 4 337

    [47]

    Adelberger E G, Gundlach J H, Heckel B R, Hoedl S, Schlamminger S 2009 Prog. Part. Nucl. Phys. 62 102

    [48]

    Spero R, Hoskins J K, Newman R, Pellam J, Schultz J 1980 Phys. Rev. Lett. 44 1645

    [49]

    Long D R 1980 IL Nuovo Cimento B (1971-1996) 55 252

    [50]

    Yan H, Housworth E A, Meyer H O, Visser G, Weisman E, Long J C 2014 Class. Quantum Gravity 31 205007

    [51]

    Chiaverini J, Smullin S J, Geraci A A, Weld D M, Kapitulnik A 2003 Phys. Rev. Lett. 90 151101

    [52]

    Weld D, Xia J, Cabrera B, Kapitulnik A 2008 Phys. Rev. D 77 062006

    [53]

    Kim W J, Sushkov A O, Dalvit D A R, Lamoreaux S K 2009 Phys. Rev. Lett. 103 060401

    [54]

    Harris B W, Chen F, Mohideen U 2000 Phys. Rev. A 62 052109

    [55]

    Tan W H 2016 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[谭文海 2016 博士学位论文 (武汉:华中科技大学)]

    [56]

    Yin H, Bai Y Z, Hu M, Liu L, Luo J, Tan D Y, Yeh H C, Zhou Z B 2014 Phys. Rev. D 90 122001

    [57]

    Saulson P R 1990 Phys. Rev. D 42 2437

    [58]

    Pollack S, Schlamminger S, Gundlach J H 2008 Phys. Rev. Lett. 101 071101

    [59]

    Behunin R O, Dalvit D A R, Decca R S, Speake C C 2014 Phys. Rev. D 89 051301

    [60]

    Klimchitskaya G L, Mohideen U, Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827

    [61]

    Wang J B 2017 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[王建波 2017 博士学位论文 (武汉:华中科技大学)]

    [62]

    Hoogenboom B W, Frederix P L T M, Yang J L, Martin S, Pellmont Y, Steinacher M, Zäch S, Langenbach E, Heimbeck H J, Engel A, Hug H J 2005 Appl. Phys. Lett. 86 074101

  • [1] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [2] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [3] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法. 物理学报, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [9] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [10] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [11] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [12] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [13] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [15] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量. 物理学报, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [16] 钟双英, 刘崧, 胡淑娟. 致密双星后牛顿偏心轨道的引力波研究. 物理学报, 2013, 62(23): 230401. doi: 10.7498/aps.62.230401
    [17] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [18] 钟双英, 刘崧. 旋转致密双星后牛顿轨道的引力波研究. 物理学报, 2012, 61(12): 120401. doi: 10.7498/aps.61.120401
    [19] 付宏洋, 文德华, 燕晶. 考虑非牛顿引力下的快速转动混合星性质. 物理学报, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [20] 江体乾. 关于非牛顿型流体边界层的研究. 物理学报, 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
计量
  • 文章访问数:  8724
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-05-28
  • 刊出日期:  2019-08-20

/

返回文章
返回