搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性克尔效应对飞秒激光偏振的超快调制

林贤 金钻明 李炬赓 郭飞云 庄乃锋 陈建中 戴晔 阎晓娜 马国宏

引用本文:
Citation:

非线性克尔效应对飞秒激光偏振的超快调制

林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏

Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect

Lin Xian, Jin Zuan-Ming, Li Ju-Geng, Guo Fei-Yun, Zhuang Nai-Feng, Chen Jian-Zhong, Dai Ye, Yan Xiao-Na, Ma Guo-Hong
PDF
导出引用
  • 研究了近红外飞秒激光的偏振在太赫兹频率的超快调制.利用抽运-探测光谱技术,通过改变两个脉冲之间的延迟时间可以控制光脉冲的旋转角.在Li:NaTb(WO42磁光晶体中观察到探测光的偏振随延迟时间变化的高速振荡,振荡信号的中心频率为0.19 THz.这种超快偏振调制现象可以解释为,抽运-探测实验构置中,前向传播的抽运光诱导的光学克尔非线性引起被晶体远端表面所反射的背向传播的探测光脉冲偏振面的额外旋转.通过改变抽运光的圆偏振旋性可以控制探测光调制信号的相位和振幅.实验结果表明,非线性光学克尔效应可以作为一种全新的手段,在磁光晶体中实现近红外飞秒激光以太赫兹频率的超快偏振调控.这将在超快磁光调制器等全光器件中得以应用.实验结果将有助于偏振依赖的超快动力学过程的研究.
    Polarized light has already been widely used for photography and display technologies. Magneto-optical Faraday effect, i.e., the light polarization rotates in the magnetic field applied to the material in the direction of light propagation, plays a crucial role in the interaction between light and spin. Faraday effect allow us to understand the nature of magnetization in condensed materials. As an effect opposite to the Faraday effect, the magnetization can be induced in a transparent medium exposed to a circularly polarized electromagnetic wave, which is called inverse Faraday effect. Knowledge of the mechanism provides the opportunities of modulation devices in photonics, ultrafast opto-magnetism and magnonics. In this paper, we experimentally demonstrate a proof-of-concept ultrafast polarization modulation by employing circularly polarized light to demonstrate a strengthened terahertz (THz) frequency Kerr modulation signal, at room temperature. By using the transient pumpprobe spectroscopy with the reflected geometry, we are able to demonstrate the feasibility of such an ultrafast magneto-optical polarization modulation at 0.19 THz in a paramagnetic Li:NaTb (WO4)2 crystal with a thickness of 3 mm. The time-resolved modulation signal is explained by the interaction between two counter-propagating laser pulses (central photon energy of 1.55 eV) within the crystal via the optical Kerr effect. We find that the amplitude of the modulation increases with the pump fluence increasing, while the modulation frequency is dependent neither on the pump fluence nor on polarization of pump beam. However, it can further be found that the phase and amplitude of the transient Kerr modulation are strongly dependent on the helicity of the circularly polarized pump pulses. Indeed, these oscillating signals may be mistaken for spin excitation modes. The present findings allow us to get an insight into the transient magneto-optical dynamical process in transparent medium. In addition, the polarization modulation of ultrashort laser pulse on a picosecond time scale will facilitate all-optical data processing, as well as the polarization-dependent ultrafast dynamics in various material systems, which span from condensed matter to molecular spectroscopy. In this regard, our experimental results provide a possibility for designing novel all-optical (magneto-optical) modulators operating at THz clock frequencies. The magneto-optical polarization response modulated at THz frequencies may have new possibilities for designing all-optical devices, such as ultrafast modulators.
    • 基金项目: 国家自然科学基金(批准号:11604202,11674213,61735010,11774220)、上海高校青年东方学者(批准号:QD2015020)、上海市教育委员会和上海市教育发展基金会“晨光计划”(批准号:16CG45)和上海市青年科技启明星计划(批准号:18QA1401700)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604202,11674213,61735010,11774220), the Young Eastern Scholar at Shanghai Institutions of Higher Learning, China (Grant No. QD2015020), the “Chen Guang” Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China (Grant No. 16CG45), and the Shanghai Rising-Star Program, China (Grant No.18QA1401700).
    [1]

    Svirko Y P, Zheludev N I 1998 Polarization of Light in Nonlinear Optics (New York: John Wiley & Sons) p1

    [2]

    Wraback M, Shen H 2000 Appl. Phys. Lett. 76 1288

    [3]

    Gansen E J, Jarasiunas K, Smirl A L 2002 Appl. Phys. Lett. 80 971

    [4]

    Wismer M S, Stockman M I, Yakovlev V S 2017 Phys. Rev. B 96 224301

    [5]

    Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P 2004 Proc. SPIE 5577 133

    [6]

    Yang Y M, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nature Photon. 11 390

    [7]

    Li D F 2017 Nature Photon. 11 336

    [8]

    Zvezdin A K, Kotov V A 1997 Modern Magneto-Optics and Magnetooptical Materials (Boca Raton: CRC Press) p1

    [9]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [10]

    Pershan P S, Ziel J P V D, Malmstrom L D 1966 Phys. Rev. 143 574

    [11]

    Jin Z, Ma H, Wang L, Ma G, Guo F, Chen J 2010 Appl. Phys. Lett. 96 201108

    [12]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, Erve O M J V, Kabanov Y P, Rees D, Li Y F, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nature Photon. 12 73

    [13]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [14]

    Wang H, Jin Z, Liu X, Zhang Z, Lin X, Cheng Z, Ma G 2017 Appl. Phys. Lett. 110 252407

    [15]

    Bossini D, Konishi K, Toyoda S, Arima T, Yumoto J, Kuwata-Gonokami M 2018 Nature Phys. 14 370

    [16]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nature Photon. 7 720

    [17]

    Shalaby M, Vicario C, Hauri C P 2016 Appl. Phys. Lett. 108 182903

    [18]

    Riordan J A, Sun F G, Lu Z G, Zhang X C 1997 Appl. Phys. Lett. 71 1452

    [19]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nature Photon. 5 31

    [20]

    Jin Z, Ma H, Li D, Wang L, Ma G, Guo F, Chen J 2011 Appl. Phys. B 104 59

    [21]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [22]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K, Jin Z, Cao S, Ren W, Ma G, Mikhaylovskiy R V 2018 ACS Photon. 5 1375

    [23]

    Kim J W, Vomir M, Bigot J Y 2012 Phys. Rev. Lett. 109 166601

    [24]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204

    [25]

    Subkhangulov R R, Mikhaylovskiy R V, Zvezdin A K, Kruglyak V V, Rasing T, Kimel A V 2016 Nature Photon. 10 111

    [26]

    Ghamsari B G, Berini P 2016 Nature Photon. 10 74

    [27]

    Mikhaylovskiy R V, Subkhangulov R R, Rasing T, Kimel A V 2016 Opt. Lett. 4 5071

    [28]

    Liu J, Guo F, Zhao B, Zhuang N, Chen Y, Gao Z, Chen J 2008 J. Cryst. Growth 310 2613

    [29]

    Gruber J B, Sardar D K, Yow R M, Valiev U V, Mukhammadiev A K, Sokolov V Y, Amin I, Lengyel K, Kachur I S, Piryatinskaya V G, Zandi B 2007 J. Appl. Phys. 101 023108

    [30]

    Gavignet-Tillard A, Hammann J, Seze L D 1973 J. Phys. Chem. Solids 34 241

    [31]

    Righini R 1993 Science 262 1386

    [32]

    Farrer R A, Fourkas J T 2003 Acc. Chem. Res. 36 605

    [33]

    Guo F, Sun Y, Yang X, Chen X, Zhao B, Zhuang N, Chen J 2016 Opt. Express 24 5734

  • [1]

    Svirko Y P, Zheludev N I 1998 Polarization of Light in Nonlinear Optics (New York: John Wiley & Sons) p1

    [2]

    Wraback M, Shen H 2000 Appl. Phys. Lett. 76 1288

    [3]

    Gansen E J, Jarasiunas K, Smirl A L 2002 Appl. Phys. Lett. 80 971

    [4]

    Wismer M S, Stockman M I, Yakovlev V S 2017 Phys. Rev. B 96 224301

    [5]

    Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P 2004 Proc. SPIE 5577 133

    [6]

    Yang Y M, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nature Photon. 11 390

    [7]

    Li D F 2017 Nature Photon. 11 336

    [8]

    Zvezdin A K, Kotov V A 1997 Modern Magneto-Optics and Magnetooptical Materials (Boca Raton: CRC Press) p1

    [9]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655

    [10]

    Pershan P S, Ziel J P V D, Malmstrom L D 1966 Phys. Rev. 143 574

    [11]

    Jin Z, Ma H, Wang L, Ma G, Guo F, Chen J 2010 Appl. Phys. Lett. 96 201108

    [12]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, Erve O M J V, Kabanov Y P, Rees D, Li Y F, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nature Photon. 12 73

    [13]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [14]

    Wang H, Jin Z, Liu X, Zhang Z, Lin X, Cheng Z, Ma G 2017 Appl. Phys. Lett. 110 252407

    [15]

    Bossini D, Konishi K, Toyoda S, Arima T, Yumoto J, Kuwata-Gonokami M 2018 Nature Phys. 14 370

    [16]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nature Photon. 7 720

    [17]

    Shalaby M, Vicario C, Hauri C P 2016 Appl. Phys. Lett. 108 182903

    [18]

    Riordan J A, Sun F G, Lu Z G, Zhang X C 1997 Appl. Phys. Lett. 71 1452

    [19]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nature Photon. 5 31

    [20]

    Jin Z, Ma H, Li D, Wang L, Ma G, Guo F, Chen J 2011 Appl. Phys. B 104 59

    [21]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [22]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K, Jin Z, Cao S, Ren W, Ma G, Mikhaylovskiy R V 2018 ACS Photon. 5 1375

    [23]

    Kim J W, Vomir M, Bigot J Y 2012 Phys. Rev. Lett. 109 166601

    [24]

    Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K, Bayer M 2010 Phys. Rev. Lett. 105 117204

    [25]

    Subkhangulov R R, Mikhaylovskiy R V, Zvezdin A K, Kruglyak V V, Rasing T, Kimel A V 2016 Nature Photon. 10 111

    [26]

    Ghamsari B G, Berini P 2016 Nature Photon. 10 74

    [27]

    Mikhaylovskiy R V, Subkhangulov R R, Rasing T, Kimel A V 2016 Opt. Lett. 4 5071

    [28]

    Liu J, Guo F, Zhao B, Zhuang N, Chen Y, Gao Z, Chen J 2008 J. Cryst. Growth 310 2613

    [29]

    Gruber J B, Sardar D K, Yow R M, Valiev U V, Mukhammadiev A K, Sokolov V Y, Amin I, Lengyel K, Kachur I S, Piryatinskaya V G, Zandi B 2007 J. Appl. Phys. 101 023108

    [30]

    Gavignet-Tillard A, Hammann J, Seze L D 1973 J. Phys. Chem. Solids 34 241

    [31]

    Righini R 1993 Science 262 1386

    [32]

    Farrer R A, Fourkas J T 2003 Acc. Chem. Res. 36 605

    [33]

    Guo F, Sun Y, Yang X, Chen X, Zhao B, Zhuang N, Chen J 2016 Opt. Express 24 5734

  • [1] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [5] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [9] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [10] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [12] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [13] 李长胜. 电光与磁光效应的互补特性及其传感应用. 物理学报, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [14] 刘微粒, 邹晓兵, 付洋洋, 王鹏, 王新新. 基于克尔效应的真空绝缘子表面电场在线测量. 物理学报, 2014, 63(9): 095207. doi: 10.7498/aps.63.095207
    [15] 郭 璐, 卫 栋, 陈海霞, 熊德智, 王鹏军, 张 靖. 铷原子热蒸气中强非线性效应产生激光模式图样的实验研究. 物理学报, 2008, 57(7): 4224-4229. doi: 10.7498/aps.57.4224
    [16] 张国营, 夏 天, 程 勇, 薛刘萍, 张学龙. 交换作用对CeF3晶体磁性和磁光效应的影响. 物理学报, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [17] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [18] 陈树琪, 刘智波, 周文远, 田建国, 臧维平, 宋 峰, 张春平. 克尔介质中脉冲宽度对瞬态热光非线性效应的影响. 物理学报, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [19] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [20] 梁冰青, 陈 熹, 周 勋, 刘 洪, 王 海, 唐云俊, 王荫君, 王松有, 陈良尧. PtMn/Co多层膜的磁光特性研究. 物理学报, 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
计量
  • 文章访问数:  4020
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-10-01
  • 刊出日期:  2018-12-05

非线性克尔效应对飞秒激光偏振的超快调制

  • 1. 上海大学物理系, 上海 200444;
  • 2. 上海光机所-上海科技大学超强超短激光及其应用联合实验室, 上海 201210;
  • 3. 福州大学化学化工学院, 福州 350002
    基金项目: 国家自然科学基金(批准号:11604202,11674213,61735010,11774220)、上海高校青年东方学者(批准号:QD2015020)、上海市教育委员会和上海市教育发展基金会“晨光计划”(批准号:16CG45)和上海市青年科技启明星计划(批准号:18QA1401700)资助的课题.

摘要: 研究了近红外飞秒激光的偏振在太赫兹频率的超快调制.利用抽运-探测光谱技术,通过改变两个脉冲之间的延迟时间可以控制光脉冲的旋转角.在Li:NaTb(WO42磁光晶体中观察到探测光的偏振随延迟时间变化的高速振荡,振荡信号的中心频率为0.19 THz.这种超快偏振调制现象可以解释为,抽运-探测实验构置中,前向传播的抽运光诱导的光学克尔非线性引起被晶体远端表面所反射的背向传播的探测光脉冲偏振面的额外旋转.通过改变抽运光的圆偏振旋性可以控制探测光调制信号的相位和振幅.实验结果表明,非线性光学克尔效应可以作为一种全新的手段,在磁光晶体中实现近红外飞秒激光以太赫兹频率的超快偏振调控.这将在超快磁光调制器等全光器件中得以应用.实验结果将有助于偏振依赖的超快动力学过程的研究.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回