搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛋清栅介质的超低压双电层薄膜晶体管

梁定康 陈义豪 徐威 吉新村 童祎 吴国栋

引用本文:
Citation:

基于蛋清栅介质的超低压双电层薄膜晶体管

梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋

Ultralow-voltage albumen-gated electric-double-layer thin film transistors

Liang Ding-Kang, Chen Yi-Hao, Xu Wei, Ji Xin-Cun, Tong Yi, Wu Guo-Dong
PDF
导出引用
  • 新一代环保、生物兼容性电子功能器件受到了广泛关注.本文采用具有高质子导电特性的天然鸡蛋清作为耦合电解质膜制备双电层薄膜晶体管,该薄膜晶体管以氧化铟锡导电玻璃为衬底和底电极,以旋涂法制备的鸡蛋清为栅介质,以磁控溅射沉积的氧化铟锌为沟道和源漏电极.实验结果表明,这种基于鸡蛋清的栅介质具有良好的绝缘性,并能在其与沟道界面处形成巨大的双电层电容,从而使得该类晶体管具有超低工作电压(1.5 V)、低亚阈值(164 mV/dec)、大电流开关比(2.4×106)和较高的饱和区场效应迁移率(38.01 cm2/(V· s)).这种以天然鸡蛋清为栅介质的超低压双电层TFTs有望应用于新型生物电子器件及低能耗便携式电子产品.
    In recent years, environment-friendly and biocompatible electronics have received extensive attention. As a kind of natural biological material with rich sources, proteins have been widely used in electronic devices. In this work, electric-double-layer (EDL) thin-film transistors (TFTs) gated by natural chicken albumen are fabricated at room temperature. The indium-tin-oxide (ITO) conductive glass is employed as a substrate. The spin coated chicken albumen film is used as the gate dielectric. The indium-zinc-oxide (IZO) is sputtered on an albumen-coated ITO glass as the channel and the source/drain electrodes with only one shadow mask. The capacitance-frequency measurements demonstrate an ultra-large specific capacitance of the albumen film at low frequencies. For the physical understanding of the capacitive coupling within the albumen film, the phase angle is characterized as a function of frequency. The results indicate that such an ultra-large capacitive coupling can be attributed to the proton migration under the electric field, which results in the EDL effect at the interface of the albumen film. By DC sweep measurements, a low leakage current is observed (<3.0 nA at Vgs=1.5 V), which indicates a good isolation of the albumen-based dielectric. By transfer and output measurements, an ultralow operation voltage of 1.5 V, a high field-effect mobility of 38.01 cm2/(V·s), a low subthreshold swing of 164 mV/decade, and a large on-off ratio of 2.4×106 are obtained for such albumen-gated TFTs. The ultra-large EDL capacitive coupling is responsible for such good electrical characteristics. The dynamic bias stress stability of the albumen-gated TFTs is also investigated. The device exhibits a good reproducibility in response to the repeatedly pulsed gate voltage. A maintainable on-to-off ratio (>106) and no obvious current loss are observed, which suggests that neither chemical doping nor chemical reaction occurs at the albumen-based dielectric/IZO channel interface when the gate potential is biased. After being aged one day in air ambient without surface passivation, the albumen-gated TFTs show a good stability of the electrical properties. Such ultralow-voltage EDL-TFTs gated by albumen electrolyte will be useful for the bioelectronic and low-energy portable electronic products. And our results will also have potential applications in biocompatible artificial neuron networks and brain-inspired neuromorphic systems.
    • 基金项目: 国家自然科学基金(批准号:61704088,51602311)、南京邮电大学基金(批准号:NY217116),射频集成和微组装技术国家地方联合工程实验室(批准号:KFJJ20170101)和安徽省自然科学基金(批准号:1708085MF148)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704088, 51602311), the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY217116), the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, China (Grant No. KFJJ20170101), and the Natural Science Foundation of Anhui Province, China (Grant No. 11708085MF148).
    [1]

    Siegel A C, Phillips S T, Wiley B J, Whitesides G M 2009 Lab Chip 9 2775

    [2]

    Martins R, Barquinha P, Pereira L, Correia N, Goncalo G, Ferreira I, Fortunato E 2008 Appl. Phys. Lett. 93 203501

    [3]

    Ordinario D D, Phan L, Walkup W G, Jocson J M, Karshalev E, Hüsken N, Gorodetsky A A 2014 Nat. Chem. 6 596

    [4]

    Ratner B D, Bryant S J 2004 Annu. Rev. Biomed. Eng. 6 41

    [5]

    Willner I 2002 Science 298 2407

    [6]

    Yu X, Shou W, Mahajan B K, Huang X, Pan H 2018 Adv. Mater. 30 28

    [7]

    Irimia-Vladu M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350

    [8]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701

    [9]

    Hu W, Jiang J, Xie D D, Wang S T, Bi K, Duan H, Yang J, He J 2018 Nanoscale 10 14893

    [10]

    Wu J, Lin L Y 2015 Adv. Opt. Mater. 3 1530

    [11]

    Wang L, Jackman J A, Tan E L, Park J H, Potroz M G, Hwang E T, Cho N J 2017 Nano Energy 36 38

    [12]

    Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S 2016 Adv. Mater. 28 5169

    [13]

    Street R A 2009 Adv. Mater. 21 2007

    [14]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonc A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [15]

    Lu Y J, Fujii M, Kanai H 1998 Int. J. Food Sci. Technol. 33 393

    [16]

    Xie D D, Jiang J, Hu W N, He Y L, Yang J L, He J, Gao Y L, Wan Q 2018 ACS Appl. Mater. Interfaces 10 25943

    [17]

    Darvishi H, Khoshtaghaza M, Zarein M, Azadbakht M 2012 Agric. Eng. Int.: CIGR Journal 14 224

    [18]

    Sela M, Lifson S 1959 Biochim. Biophys. Acta 36 471

    [19]

    Chang J W, Wang C G, Huang C Y, Tsai T D, Guo T F, Wen T C 2011 Adv. Mater. 23 4077

    [20]

    Mine Y 1995 Trends Food Sci. Tech. 6 225

    [21]

    Ma C, Holme J 1982 J. Food Sci. 47 1454

    [22]

    Zhong C, Deng Y, Roudsari A F, Kapetanovic A, Anantram M P, Rolandi M 2011 Nat. Commun. 2 476

    [23]

    Jiang J, Sun J, Lu A, Wan Q 2011 IEEE Electron Device Lett. 58 547

    [24]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900

    [25]

    Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D 2007 J. Am. Chem. Soc. 129 4532

  • [1]

    Siegel A C, Phillips S T, Wiley B J, Whitesides G M 2009 Lab Chip 9 2775

    [2]

    Martins R, Barquinha P, Pereira L, Correia N, Goncalo G, Ferreira I, Fortunato E 2008 Appl. Phys. Lett. 93 203501

    [3]

    Ordinario D D, Phan L, Walkup W G, Jocson J M, Karshalev E, Hüsken N, Gorodetsky A A 2014 Nat. Chem. 6 596

    [4]

    Ratner B D, Bryant S J 2004 Annu. Rev. Biomed. Eng. 6 41

    [5]

    Willner I 2002 Science 298 2407

    [6]

    Yu X, Shou W, Mahajan B K, Huang X, Pan H 2018 Adv. Mater. 30 28

    [7]

    Irimia-Vladu M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350

    [8]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701

    [9]

    Hu W, Jiang J, Xie D D, Wang S T, Bi K, Duan H, Yang J, He J 2018 Nanoscale 10 14893

    [10]

    Wu J, Lin L Y 2015 Adv. Opt. Mater. 3 1530

    [11]

    Wang L, Jackman J A, Tan E L, Park J H, Potroz M G, Hwang E T, Cho N J 2017 Nano Energy 36 38

    [12]

    Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S 2016 Adv. Mater. 28 5169

    [13]

    Street R A 2009 Adv. Mater. 21 2007

    [14]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonc A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [15]

    Lu Y J, Fujii M, Kanai H 1998 Int. J. Food Sci. Technol. 33 393

    [16]

    Xie D D, Jiang J, Hu W N, He Y L, Yang J L, He J, Gao Y L, Wan Q 2018 ACS Appl. Mater. Interfaces 10 25943

    [17]

    Darvishi H, Khoshtaghaza M, Zarein M, Azadbakht M 2012 Agric. Eng. Int.: CIGR Journal 14 224

    [18]

    Sela M, Lifson S 1959 Biochim. Biophys. Acta 36 471

    [19]

    Chang J W, Wang C G, Huang C Y, Tsai T D, Guo T F, Wen T C 2011 Adv. Mater. 23 4077

    [20]

    Mine Y 1995 Trends Food Sci. Tech. 6 225

    [21]

    Ma C, Holme J 1982 J. Food Sci. 47 1454

    [22]

    Zhong C, Deng Y, Roudsari A F, Kapetanovic A, Anantram M P, Rolandi M 2011 Nat. Commun. 2 476

    [23]

    Jiang J, Sun J, Lu A, Wan Q 2011 IEEE Electron Device Lett. 58 547

    [24]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900

    [25]

    Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D 2007 J. Am. Chem. Soc. 129 4532

  • [1] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [2] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [3] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [4] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [5] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [6] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [7] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [8] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [9] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [10] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [11] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [13] 张耕铭, 郭立强, 赵孔胜, 颜钟惠. 氧对IZO低压无结薄膜晶体管稳定性的影响. 物理学报, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [14] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性. 物理学报, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [15] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管 . 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  3332
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-15
  • 修回日期:  2018-09-15
  • 刊出日期:  2018-12-05

基于蛋清栅介质的超低压双电层薄膜晶体管

  • 1. 南京邮电大学电子与光学工程学院, 南京 210023;
  • 2. 中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福州 350002
    基金项目: 国家自然科学基金(批准号:61704088,51602311)、南京邮电大学基金(批准号:NY217116),射频集成和微组装技术国家地方联合工程实验室(批准号:KFJJ20170101)和安徽省自然科学基金(批准号:1708085MF148)资助的课题.

摘要: 新一代环保、生物兼容性电子功能器件受到了广泛关注.本文采用具有高质子导电特性的天然鸡蛋清作为耦合电解质膜制备双电层薄膜晶体管,该薄膜晶体管以氧化铟锡导电玻璃为衬底和底电极,以旋涂法制备的鸡蛋清为栅介质,以磁控溅射沉积的氧化铟锌为沟道和源漏电极.实验结果表明,这种基于鸡蛋清的栅介质具有良好的绝缘性,并能在其与沟道界面处形成巨大的双电层电容,从而使得该类晶体管具有超低工作电压(1.5 V)、低亚阈值(164 mV/dec)、大电流开关比(2.4×106)和较高的饱和区场效应迁移率(38.01 cm2/(V· s)).这种以天然鸡蛋清为栅介质的超低压双电层TFTs有望应用于新型生物电子器件及低能耗便携式电子产品.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回