搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结构在光伏型卤化物钙钛矿光电转换器件中的应用

郤育莺 韩悦 李国辉 翟爱平 冀婷 郝玉英 崔艳霞

引用本文:
Citation:

异质结构在光伏型卤化物钙钛矿光电转换器件中的应用

郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞

Application of heterostructures in halide perovskite photovoltaic devices

Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia
PDF
HTML
导出引用
  • 钙钛矿材料由于具有长的载流子扩散长度、较高的吸收系数和较低的缺陷态密度等优点在太阳电池、光电探测器、发光二极管等光电转换器件领域得到广泛应用. 同时, 层状二维材料、低维半导体纳米结构、金属纳米结构和绝缘材料等功能材料因它们特殊的化学、电学和物理性质而越来越受到人们的关注. 为了拓宽钙钛矿材料在光电转换器件的应用, 可将钙钛矿与这些功能材料进行组合, 形成异质结构, 集成两种材料的优点. 钙钛矿/功能材料异质结构可作为界面修饰层、电荷传输层、封装层等应用于卤化物钙钛矿光电转换器件中, 用来抑制光生载流子的复合损耗, 提升载流子的传输性能, 改善器件的稳定性等. 本文综述了钙钛矿与层状二维材料、低维半导体纳米结构、金属纳米结构和绝缘材料等形成的异质结构在光伏型光电转换器件中应用的最新研究进展, 并对该方向未来的发展做出了展望.
    Perovskites are widely used in various kinds of optoelectronic devices, including solar cells, photodetectors, light-emitting diodes, etc., due to their excellent properties such as long carrier diffusion length, high absorption coefficient, low trap state density and so on. Functional materials such as layered two-dimensional materials (graphene, transition metal dichalcogenides, etc.),low-dimensional semiconductor nanostructures (nanoparticles, quantum dots, nanowires, nanotubes,nanorods,nanopieces,etc.), metallic nanostructures(Au,Ag, etc.) and insulating materials (insulating polymer, organic amine, inorganic insulating film, etc.) have attracted more and more attention due to their special chemical, electrical and physical properties.In order to broaden the application of perovskites in photovoltaic devices, perovskites can be combined with various functional materials to form heterostructures so as to combine the advantages of the two types of materials.The heterostructures of perovskites/functional materials can be used as the interface modification layer in halide perovskites photovoltaic devices, to improve the crystallinity of perovskite, effectively reduce the surface defects and suppress the carrier recombination loss at the interface. The heterostructures of perovskites/functional materials can be used as the charge transporting layer in halide perovskites photovoltaic devices, can match well with the perovskite energy levels, which is beneficial to the efficient extraction of holes and electrons. The heterostructures of perovskites/functional materials also can be used as encapsulation layer in halide perovskites photovoltaic devices, to reduce the contact between water and perovskite, it can effectively prevent the degradation of perovskite, to improve the device stability.In addition, the semiconductor with narrow bandgap or array structure can be used to broaden the spectral response and to improve the light absorption of the perovskite photovoltaic devices.In a word, the heterostructures of perovskites/functional materials are applied to devices is an effective way to obtain high performance and low cost photovoltaic devices.In this review, recent works on the applications of the heterostructures in halide perovskite photovoltaic devices are comprehensively presented and discussed. The progress and advantages of the heterostructures as the interface modification layer, charge transporting layers and encapsulation layer in halide perovskite photovoltaic devices are systemically reviewed. Finally, we summarize the whole paper and give a prospect for the development of heterostructures based perovskite photovoltaic devices in the future.
    [1]

    Fang H H, Raissa R, Abdu Aguye M, Adjokatse S, Blake G R, Even J, Loi M A 2015 Adv. Funct. Mater. 25 2378Google Scholar

    [2]

    Du M H 2014 J. Mater.Chem.A 2 9091Google Scholar

    [3]

    Sun J, Wu J, Tong X, Lin F, Wang Y, Wang Z M 2018 Adv. Sci. (Weinh) 5 1700780Google Scholar

    [4]

    Ma Y, Liu Y, Shin I, Hwang I W, Jung Y K, Jeong J H, Park S H, Kim K H 2017 ACS Appl. Mater. Interfaces 9 33925Google Scholar

    [5]

    Liu Y, Zhang Y, Yang Z, Ye H, Feng J, Xu Z, Zhang X, Munir R, Liu J, Zuo P, Li Q, Hu M, Meng L, Wang K, Smilgies D M, Zhao G, Xu H, Yang Z, Amassian A, Li J, Zhao K, Liu S F 2018 Nat. Commun 9 5302Google Scholar

    [6]

    Yang Z, Deng Y, Zhang X, Wang S, Chen H, Yang S, Khurgin J, Fang N X, Zhang X, Ma R 2018 Adv. Mater. 30 1704333Google Scholar

    [7]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [8]

    Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [9]

    Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qiao H, Song J, Li S, Sun B, Cheng Y B, Bao Q 2015 Adv. Opt. Mater. 3 1389Google Scholar

    [10]

    Dang V Q, Han G S, Trung T Q, Duy L T, Jin Y U, Hwang B U, Jung H S, Lee N E 2016 Carbon 105 353Google Scholar

    [11]

    Huo C, Liu X, Wang Z, Song X, Zeng H 2018 Adv. Opt. Mater. 6 1800152Google Scholar

    [12]

    Li Z, Moon J, Gharajeh A, Haroldson R, Hawkins R, Hu W, Zakhidov A, Gu Q 2018 ACS Nano 12 10968Google Scholar

    [13]

    Liu X, Yu D, Song X, Zeng H 2018 Small 14 1801460Google Scholar

    [14]

    Qiu L, Ono L K, Qi Y 2018 Mater. Today Energy 7 169Google Scholar

    [15]

    Rothenbach N, Gruner M E, Ollefs K, Schmitz Antoniak C, Salamon S, Zhou P, Li R, Mo M, Park S, Shen X, Weathersby S, Yang J, Wang X J, Pentcheva R, Wende H, Bovensiepen U, Sokolowski Tinten K, Eschenlohr A 2019 Phys. Rev. B 100 174301Google Scholar

    [16]

    Jing H, Ling F, Liu X, Chen Y, Zeng W, Zhang Y, Fang L, Zhou M 2019 Electron. Struct. 1 015010Google Scholar

    [17]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [18]

    You P, Tang G, Yan F 2019 Mater.Today Energy 11 128Google Scholar

    [19]

    王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801Google Scholar

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801Google Scholar

    [20]

    Luo Q, Zhang Y, Liu C, Li J, Wang N, Lin H 2015 J. Mater. Chem. A 3 15996Google Scholar

    [21]

    Feng S, Yang Y, Li M, Wang J, Cheng Z, Li J, Ji G, Yin G, Song F, Wang Z, Li J, Gao X 2016 ACS Appl. Mater. Interfaces 8 14503Google Scholar

    [22]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv.Energy Mater. 7 1602120Google Scholar

    [23]

    Han G S, Song Y H, Jin Y U, Lee J W, Park N G, Kang B K, Lee J K, Cho I S, Yoon D H, Jung H S 2015 ACS Appl. Mater. Interfaces 7 23521Google Scholar

    [24]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

    [25]

    Yang Z, Xie J, Arivazhagan V, Xiao K, Qiang Y, Huang K, Hu M, Cui C, Yu X, Yang D R 2017 Nano Energy 40 345Google Scholar

    [26]

    Gan X, Yang S, Zhang J, Wang G, He P, Sun H, Yuan H, Yu L, Ding G, Zhu Y J 2019 ACS Appl. Mater. Interfaces 11 37796Google Scholar

    [27]

    Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D 2017 ACS Nano 11 9176Google Scholar

    [28]

    Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y 2020 Appl. Surf. Sci. 507 145099Google Scholar

    [29]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505Google Scholar

    [30]

    Li H, Tao L, Huang F, Sun Q, Zhao X, Han J, Shen Y, Wang M 2017 ACS Appl. Mater. Interfaces 9 38967Google Scholar

    [31]

    Hadadian M, Correa Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Gratzel M, Hagfeldt A 2016 Adv. Mater. 28 8681Google Scholar

    [32]

    李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强 2019 物理学报 68 158803Google Scholar

    Li X G, Zhang X, Shi Z J, Zang H J, Zhu C J, Zhan Y Q 2019 Acta Phys. Sin. 68 158803Google Scholar

    [33]

    Tavakoli M M, Tavakoli R, Yadav P, Kong J 2019 J. Mater. Chem. A 7 679Google Scholar

    [34]

    Agresti A, Pescetelli S, Palma A L, Del Rio Castillo A E, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F, Di Carlo A 2017 ACS Energy Letter. 2 279Google Scholar

    [35]

    Agresti A, Pescetelli S, Taheri B, Del Rio Castillo A E, Cinà L, Bonaccorso F, Di Carlo A 2016 ChemSusChem 9 2609Google Scholar

    [36]

    Wang Z, Ou Q, Zhang Y, Zhang Q, Hoh H Y, Bao Q 2018 ACS Appl. Mater. Interfaces 10 24258Google Scholar

    [37]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513Google Scholar

    [38]

    Mahmoudi T, Wang Y, Hahn Y B 2018 ACS Energy Letter. 4 235

    [39]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [40]

    Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M 2013 Energy Environ. Sci. 10 337

    [41]

    Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M 2016 Adv. Energy Mater. 6 1501873Google Scholar

    [42]

    Guo X, Han B, Gao Y, Liu D, Chen J, Chen P, Xu L, Cui C 2020 Mater. Res. Express 7 016415Google Scholar

    [43]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [44]

    Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [45]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [46]

    Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinà L, Pellegrini V, Carlo A D, Bonaccorso F 2016 Adv. Energy Mater. 6 1600920Google Scholar

    [47]

    Agresti A, Pescetelli S, Palma A L, Martín García B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 ACS Energy Letter. 4 1862Google Scholar

    [48]

    Wang D, Elumalai N K, Mahmud M A, Yi H, Upama M B, Lee Chin R A, Conibeer G, Xu C, Haque F, Duan L, Uddin A 2018 Synth. Met. 246 195Google Scholar

    [49]

    Choi Y, Jung S, Oh N K, Lee J, Seo J, Kim U, Koo D, Park H 2019 ChemNanoMat 5 1050Google Scholar

    [50]

    Dasgupta U, Chatterjee S, Pal A J 2017 Sol. Energy Mater. Sol. Cells 172 353Google Scholar

    [51]

    Najafi L, Taheri B, Martín García B, Bellani S, Di Girolamo D, Agresti A, Oropesa Nuñez R, Pescetelli S, Vesce L, Calabrò E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [52]

    Ahmed M I, Hussain Z, Khalid A, Amin H M N, Habib A 2016 Mater. Res. Express 3 045022Google Scholar

    [53]

    Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J J, Jeong U, Cho K 2019 J. Mater. Chem. A 7 7151Google Scholar

    [54]

    Huang P, Wang Z, Liu Y, Zhang K, Yuan L, Zhou Y, Song B, Li Y 2017 ACS Appl. Mater. Interfaces 9 25323Google Scholar

    [55]

    Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M, Maksudov T, Najafi L, Del Rio Castillo A E, Kioseoglou G, Stratakis E, Bonaccorso F, Kymakis E 2018 Adv. Energy Mater. 8 1702287Google Scholar

    [56]

    Ray R, Sarkar A S, Pal S K 2019 Sol. Energy 193 95Google Scholar

    [57]

    Deng Y L, Xu Z Y, Cai K, Ma F, Hou J, Peng S L 2019 Chin. Phys.B 28 098802Google Scholar

    [58]

    Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y 2017 Jpn. J. Appl. Phys. 56 08M

    [59]

    Jiang Q, Zhang X, You J 2018 Small 14 1801154Google Scholar

    [60]

    Zhu Z, Bai Y, Liu X, Chueh C C, Yang S, Jen A K Y 2016 Adv. Mater. 28 6478Google Scholar

    [61]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa Baena J P 2018 ACS Energy Letter. 3 773Google Scholar

    [62]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy 26 208Google Scholar

    [63]

    Dong Q, Li J, Shi Y, Chen M, Ono L K, Zhou K, Zhang C, Qi Y, Zhou Y, Padture N P, Wang L Z 2019 Adv. Energy Mater. 9 1900834

    [64]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [65]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [66]

    Guo Y, Li X, Kang L L, He X, Ren Z Q, Wu J D, Qi J Y 2016 RSC Adv. 6 62522Google Scholar

    [67]

    Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M 2019 Joule 3 1963Google Scholar

    [68]

    Liu C, Hu M, Zhou X, Wu J, Zhang L, Kong W, Li X, Zhao X, Dai S, Xu B, Cheng C 2018 NPG Asia. Mater. 10 552Google Scholar

    [69]

    Liu C, Wang K, Du P, Wang E, Gong X, Heeger A J 2015 Nanoscale 7 16460Google Scholar

    [70]

    宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 052901Google Scholar

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901Google Scholar

    [71]

    Dharani S, Mulmudi H K, Yantara N, Thu Trang P T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675Google Scholar

    [72]

    Yu J, Chen X, Wang Y, Zhou H, Xue M, Xu Y, Li Z, Ye C, Zhang J, van Aken P A, Lund P D, Wang H 2016 J.Mater.Chem.C 4 7302Google Scholar

    [73]

    Zhou H, Yang L, Gui P, Grice C R, Song Z, Wang H, Fang G 2019 Sol. Energy Mater. Sol. Cells 193 246Google Scholar

    [74]

    Gu Z, Chen F, Zhang X, Liu Y, Fan C, Wu G, Li H, Chen H 2015 Sol. Energy Mater. Sol. Cells 140 396Google Scholar

    [75]

    Gao X, Li J, Baker J, Hou Y, Guan D, Chen J, Yuan C 2014 Chem. Commun (Camb) 50 6368Google Scholar

    [76]

    Gao X, Li J, Gollon S, Qiu M, Guan D, Guo X, Chen J, Yuan C 2017 Phys. Chem. Chem. Phys. 19 4956Google Scholar

    [77]

    Liu Z, Zhang M, Xu X, Cai F, Yuan H, Bu L, Li W, Zhu A, Zhao Z, Wang M, Cheng Y B, He H 2015 J. Mater. Chem. A 3 24121Google Scholar

    [78]

    Choi D H, Nam S K, Jung K, Moon J H 2019 Nano Energy 56 365Google Scholar

    [79]

    He J, Wu J, Hu S, Shen H, Hu X 2019 Opt. Mater. 88 689Google Scholar

    [80]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [81]

    Baek S W, Noh J, Lee C H, Kim B, Seo M K, Lee J Y 2013 Sci. Rep. 3 1726

    [82]

    Carretero Palacios S, Calvo M E, Míguez H 2015 J. Phys. Chem. 119 18635

    [83]

    Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y, Yang J 2016 J. Phys. Chem. C 120 6996Google Scholar

    [84]

    Sawanta S M, Chang S S, Chang K H 2016 Nanoscale 8 2664

    [85]

    Balakrishnan S K, Kamat P V 2016 ACS Energy Lett. 2 88

    [86]

    Han N, Ji T, Wang W, Li G, Li Z, Hao Y, Wu Y, Cui Y 2019 Org. Electron. 74 190Google Scholar

    [87]

    Hsu H L, Juang T Y, Chen C P, Hsieh C M, Yang C C, Huang C L, Jeng R J 2015 Sol. Energy Mater. Sol. Cells 140 224Google Scholar

    [88]

    Nourolahi H, Behjat A, Hosseini Zarch S M M, Bolorizadeh M A 2016 Sol. Energy 139 475Google Scholar

    [89]

    Zhang X, Liu J, Kou D, Zhou W, Zhou Z, Tian Q, Meng Y, Wu S, Cao A, Ouyang C 2017 Solar RRL 1 1700151Google Scholar

    [90]

    Kakavelakis G, Alexaki K, Stratakis E, Kymakis E 2017 RSC Advances 7 12998Google Scholar

    [91]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [92]

    Lu Z L, Pan X J, Ma Y Z, Li Y, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, Huang Y D, Xiao L X, Qi H G 2015 RSC Adv. 5 11175

    [93]

    Ye T, Ma S, Jiang X, Wei L, Vijila C, Ramakrishna S 2017 Adv. Funct. Mater. 27 1606545Google Scholar

    [94]

    Chueh C C, Li C Z, Jen A K Y 2015 Energy. Environ. Sci. 8 1160Google Scholar

    [95]

    Wen X R, Wu J M, Ye M D, Gao D, Lin C J 2016 Chem. Commun. 52 11355

    [96]

    Yavari M, Mazloum Ardakani M, Gholipour S, Tavakoli M M, Taghavinia N, Hagfeldt A, Tress W 2018 ACS Omega 3 5038Google Scholar

    [97]

    Li G, Deng S, Zhang M, Chen R, Xu P, Wong M, Kwok H S 2018 Solar RRL 2 1800151Google Scholar

    [98]

    Zhang F, Song J, Hu R, Xiang Y, He J, Hao Y, Lian J, Zhang B, Zeng P, Qu J 2018 Small 14 e1704007Google Scholar

    [99]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T 2017 ChemSusChem 10 2473Google Scholar

    [100]

    Wang Q, Dong Q, Li T, Gruverman A, Huang J 2016 Adv. Mater. 28 6734Google Scholar

    [101]

    Xiong H, Giovanni DeLucab, Rui Y C, Zhang B X, Li Y G, Zhang Q H, Wang H Z, Elsa Reichmanis 2018 ACS Appl. Mater. Interfaces 10 35385Google Scholar

    [102]

    Yang J a, Qin T, Xie L, Liao K, Li T, Hao F 2019 J. Mater. Chem.C 7 10724Google Scholar

    [103]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [104]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [105]

    Wu Q W, Yang Z B, Peter N. Rudd, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [106]

    Chen L, Xie X, Liu Z, Lee E C 2017 J. Mater. Chem. A 5 6974Google Scholar

    [107]

    Yao K, Wang X, Xu Y x, Li F, Zhou L 2016 Chem. Mater. 28 3131Google Scholar

    [108]

    Cohen B E, Wierzbowska M, Etgar L 2017 Adv. Funct. Mater. 27 1604733Google Scholar

    [109]

    周立, 朱俊, 徐亚峰, 邵志鹏, 张旭辉, 叶加久, 黄阳, 张昌能, 戴松元 2016 物理化学学报 32 1207Google Scholar

    Zhou L, Zhu J, Xu Y F, Shao Z P, Zhang X H, Ye J J, Huang Y, Zhang C N, Dai S Y 2016 Acta Phys. Sin. 32 1207Google Scholar

    [110]

    Malgorzata Kot, Chittaranjan Das, Wang Z P, Karsten Henkel, Zied Rouissi, Konrad Wojciechowski, Henry J Snaith, Schmeisser D 2016 ChemSusChem 9 1Google Scholar

    [111]

    Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z, Zhang Y 2016 Nano Energy 22 223Google Scholar

    [112]

    Sutherland B R, Johnston A K, Ip A H, Xu J, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photonics 2 1117Google Scholar

    [113]

    Yu X, Chen S, Yan K, Cai X, Hu H, Peng M, Chen B, Dong B, Gao X, Zou D 2016 J. Power Sources 325 534Google Scholar

    [114]

    Cheng N, Liu P, Bai S, Yu Z, Liu W, Guo S S, Zhao X Z 2016 J. Power Sources 321 71Google Scholar

    [115]

    Ma C, Shi Y, Hu W, Chiu M H, Liu Z, Bera A, Li F, Wang H, Li L J, Wu T 2016 Adv. Mater. 28 3683Google Scholar

    [116]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41Google Scholar

    [117]

    Yao Z, Yang Z, Liu Y, Zhao W, Zhang X, Liu B, Wu H, Liu S 2017 Rsc Adv. 7 38155Google Scholar

    [118]

    Chuantian Z, Liming D 2017 Angew. Chem. 129 6628Google Scholar

  • 图 1  (a) 基于GO:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的结构示意图和能级示意图[20]; (b) 基于rGO:PCBM复合ETL的钙钛矿太阳电池的结构图[22]; (c) 钙钛矿薄膜在不同基底(ITO/GO, ITO/PEDOT:PSS和ITO)上的SEM图像[29]; (d) 有无Ag-rGO掺杂的钙钛矿太阳电池分别在相对湿度为45%—55%的室温下放置330 天后器件的PCE变化曲线[38]

    Fig. 1.  (a)Structural diagram and energy level diagram of the perovskite solar cell based on the GO:Spiro-OMe-TAD composite HTL[20]; (b)structural diagram of the perovskite solar cell based on the rGO:PCBM composite ETL[22]; (c)SEM images of perovskite films on different substrates (ITO/GO, ITO/PEDOT:PSS, and bare ITO)[29]; (d)PCE degradation trend for the perovskite solar cells with/without Ag-rGO after 330 days storage in 45%–55% relative humidity at room temperature[38].

    图 2  (a) 基于MoS2:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的结构图[47]; (b) 基于MoS2:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的能级图[47]; (c) 基于TiO2:MoS2复合ETL的钙钛矿太阳电池的阻抗分析图(Rs代表串联电阻、Rsc代表电子选择性接触产生的并联电阻、Rrec代表与活性层相关的并联电阻)[52]

    Fig. 2.  (a)Schematic diagram of the perovskite solar cell based on the MoS2:Spiro-OMe-TAD composite HTL [47]; (b)energy level diagram of the perovskite solar cell based on the MoS2:Spiro-OMe-TAD composite HTL[47]; (c)impedance analysis spectrum of the perovskite solar cell based on the TiO2:MoS2 composite ETL (Rs: the series resistance, Rsc: the shunt resistance generated by electron selective contacts, and Rrec; the shunt resistance associated with the active layer)[52].

    图 3  (a) ZnO纳米颗粒作ETL的钙钛矿太阳电池的能级图[64]; (b) 基于CsPbBr3:ZnO异质结构的光电探测器原理图[65]; (c) 无机钙钛矿α-CsPbI3量子点作为界面层应用在钙钛矿太阳电池中的示意图[68]; (d) 不同薄膜的光学吸收谱(纯PbS QDs, 纯CH3NH3PbI3, PbS QDs/CH3NH3PbI3)[69]; (e) TiO2纳米管填充钙钛矿前后的电镜图对比图[75]; (f) 不同薄膜(CH3NH3PbI3/NiO-NP、CH3NH3PbI3/NiO-NS、CH3NH3PbI3/ZrO2-NP)的时间分辨PL图[77]

    Fig. 3.  (a)Energy level diagram of the perovskite solar cell based on the ZnO nanoparticles ETL [64]; (b)schematic diagram of the photodetector based on the CsPbBr3:ZnO heterostructure [65]; (c)schematic diagram of the perovskite solar cell using α-CsPbI3 quantum dots as the interface layer[68]; (d)absorption spectra of different thin films (pristine PbS QDs, pristine CH3NH3PbI3, and PbS QDs/CH3NH3PbI3)[69]; (e) SEM images of TiO2 nanotubes before and after the perovskite deposition[75]; (f)time-resolved photoluminescence decays of different thin films (CH3NH3PbI3/NiO-NP, CH3NH3PbI3/NiO-NS, and CH3NH3PbI3/ZrO2-NP)[77].

    图 4  (a) 基于Au-NRs@SiO2/CH3NH3PbI3异质结构的钙钛矿太阳电池的原理图[83]; (b) 与AuAg-NPs@SiO2相结合的二维钙钛矿太阳电池的结构图和能级图[86]; (c) CH3NH3PbI3钙钛矿太阳电池的结构为FTO/Ag-NPs@compact-TiO2/CH3NH3PbI3:TiO2/Au[88]; (d) 不同薄膜的稳态PL谱(CH3NH3PbI3, TiO2/CH3NH3PbI3, TiO2:AuAg-NPs/CH3NH3PbI3)[92]

    Fig. 4.  (a)Schematic diagram of the perovskite solar cell with CH3NH3PbI3/Au-NRs@SiO2 heterostructure[83]; (b)schematic diagram and energy level diagram of the quasi-2 D perovskite solar cell incorporated with AuAg-NPs@SiO2[86]; (c)schematic diagram of the perovskite solar cell with a configuration of FTO/Ag-NPs@compact-TiO2/CH3NH3PbI3:TiO2/Au[88]; (d)steady-state PL spectra of different films (CH3NH3PbI3, TiO2/CH3NH3PbI3, and TiO2:AuAg-NPs/CH3NH3PbI3)[92].

    图 5  (a) 含PS层的钙钛矿太阳电池的能级图和钙钛矿层与HTL层之间的电荷传输示意图[95]; (b) PVP作界面层的钙钛矿太阳电池的结构图[96]; (c) 有无PVP绝缘材料时钙钛矿薄膜表面的SEM对比图[101]; (d) 有无PVP绝缘材料的钙钛矿太阳电池在相对湿度为50%的室温下储存30天后, 器件的PCE的变化曲线[99]

    Fig. 5.  (a) Energy level diagram of the perovskite solar cell incorporated with a PS layer and schematic diagram illustrating the carrier transfer at the interface between the perovskite and HTL layers[95]; (b) schematic diagram of the perovskite solar cell with a the PVP layer inserted between the perovskite and the HTL[96]; (c)SEM images of the perovskite films with/without PVP [101]; (d) PCE degradation trend for perovskite solar cells devices with/without PVP after 30 days storage in 50% relative humidity at room temperature [99].

  • [1]

    Fang H H, Raissa R, Abdu Aguye M, Adjokatse S, Blake G R, Even J, Loi M A 2015 Adv. Funct. Mater. 25 2378Google Scholar

    [2]

    Du M H 2014 J. Mater.Chem.A 2 9091Google Scholar

    [3]

    Sun J, Wu J, Tong X, Lin F, Wang Y, Wang Z M 2018 Adv. Sci. (Weinh) 5 1700780Google Scholar

    [4]

    Ma Y, Liu Y, Shin I, Hwang I W, Jung Y K, Jeong J H, Park S H, Kim K H 2017 ACS Appl. Mater. Interfaces 9 33925Google Scholar

    [5]

    Liu Y, Zhang Y, Yang Z, Ye H, Feng J, Xu Z, Zhang X, Munir R, Liu J, Zuo P, Li Q, Hu M, Meng L, Wang K, Smilgies D M, Zhao G, Xu H, Yang Z, Amassian A, Li J, Zhao K, Liu S F 2018 Nat. Commun 9 5302Google Scholar

    [6]

    Yang Z, Deng Y, Zhang X, Wang S, Chen H, Yang S, Khurgin J, Fang N X, Zhang X, Ma R 2018 Adv. Mater. 30 1704333Google Scholar

    [7]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [8]

    Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [9]

    Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qiao H, Song J, Li S, Sun B, Cheng Y B, Bao Q 2015 Adv. Opt. Mater. 3 1389Google Scholar

    [10]

    Dang V Q, Han G S, Trung T Q, Duy L T, Jin Y U, Hwang B U, Jung H S, Lee N E 2016 Carbon 105 353Google Scholar

    [11]

    Huo C, Liu X, Wang Z, Song X, Zeng H 2018 Adv. Opt. Mater. 6 1800152Google Scholar

    [12]

    Li Z, Moon J, Gharajeh A, Haroldson R, Hawkins R, Hu W, Zakhidov A, Gu Q 2018 ACS Nano 12 10968Google Scholar

    [13]

    Liu X, Yu D, Song X, Zeng H 2018 Small 14 1801460Google Scholar

    [14]

    Qiu L, Ono L K, Qi Y 2018 Mater. Today Energy 7 169Google Scholar

    [15]

    Rothenbach N, Gruner M E, Ollefs K, Schmitz Antoniak C, Salamon S, Zhou P, Li R, Mo M, Park S, Shen X, Weathersby S, Yang J, Wang X J, Pentcheva R, Wende H, Bovensiepen U, Sokolowski Tinten K, Eschenlohr A 2019 Phys. Rev. B 100 174301Google Scholar

    [16]

    Jing H, Ling F, Liu X, Chen Y, Zeng W, Zhang Y, Fang L, Zhou M 2019 Electron. Struct. 1 015010Google Scholar

    [17]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [18]

    You P, Tang G, Yan F 2019 Mater.Today Energy 11 128Google Scholar

    [19]

    王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801Google Scholar

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801Google Scholar

    [20]

    Luo Q, Zhang Y, Liu C, Li J, Wang N, Lin H 2015 J. Mater. Chem. A 3 15996Google Scholar

    [21]

    Feng S, Yang Y, Li M, Wang J, Cheng Z, Li J, Ji G, Yin G, Song F, Wang Z, Li J, Gao X 2016 ACS Appl. Mater. Interfaces 8 14503Google Scholar

    [22]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv.Energy Mater. 7 1602120Google Scholar

    [23]

    Han G S, Song Y H, Jin Y U, Lee J W, Park N G, Kang B K, Lee J K, Cho I S, Yoon D H, Jung H S 2015 ACS Appl. Mater. Interfaces 7 23521Google Scholar

    [24]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

    [25]

    Yang Z, Xie J, Arivazhagan V, Xiao K, Qiang Y, Huang K, Hu M, Cui C, Yu X, Yang D R 2017 Nano Energy 40 345Google Scholar

    [26]

    Gan X, Yang S, Zhang J, Wang G, He P, Sun H, Yuan H, Yu L, Ding G, Zhu Y J 2019 ACS Appl. Mater. Interfaces 11 37796Google Scholar

    [27]

    Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D 2017 ACS Nano 11 9176Google Scholar

    [28]

    Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y 2020 Appl. Surf. Sci. 507 145099Google Scholar

    [29]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505Google Scholar

    [30]

    Li H, Tao L, Huang F, Sun Q, Zhao X, Han J, Shen Y, Wang M 2017 ACS Appl. Mater. Interfaces 9 38967Google Scholar

    [31]

    Hadadian M, Correa Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Gratzel M, Hagfeldt A 2016 Adv. Mater. 28 8681Google Scholar

    [32]

    李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强 2019 物理学报 68 158803Google Scholar

    Li X G, Zhang X, Shi Z J, Zang H J, Zhu C J, Zhan Y Q 2019 Acta Phys. Sin. 68 158803Google Scholar

    [33]

    Tavakoli M M, Tavakoli R, Yadav P, Kong J 2019 J. Mater. Chem. A 7 679Google Scholar

    [34]

    Agresti A, Pescetelli S, Palma A L, Del Rio Castillo A E, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F, Di Carlo A 2017 ACS Energy Letter. 2 279Google Scholar

    [35]

    Agresti A, Pescetelli S, Taheri B, Del Rio Castillo A E, Cinà L, Bonaccorso F, Di Carlo A 2016 ChemSusChem 9 2609Google Scholar

    [36]

    Wang Z, Ou Q, Zhang Y, Zhang Q, Hoh H Y, Bao Q 2018 ACS Appl. Mater. Interfaces 10 24258Google Scholar

    [37]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513Google Scholar

    [38]

    Mahmoudi T, Wang Y, Hahn Y B 2018 ACS Energy Letter. 4 235

    [39]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [40]

    Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M 2013 Energy Environ. Sci. 10 337

    [41]

    Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M 2016 Adv. Energy Mater. 6 1501873Google Scholar

    [42]

    Guo X, Han B, Gao Y, Liu D, Chen J, Chen P, Xu L, Cui C 2020 Mater. Res. Express 7 016415Google Scholar

    [43]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [44]

    Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [45]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [46]

    Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinà L, Pellegrini V, Carlo A D, Bonaccorso F 2016 Adv. Energy Mater. 6 1600920Google Scholar

    [47]

    Agresti A, Pescetelli S, Palma A L, Martín García B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 ACS Energy Letter. 4 1862Google Scholar

    [48]

    Wang D, Elumalai N K, Mahmud M A, Yi H, Upama M B, Lee Chin R A, Conibeer G, Xu C, Haque F, Duan L, Uddin A 2018 Synth. Met. 246 195Google Scholar

    [49]

    Choi Y, Jung S, Oh N K, Lee J, Seo J, Kim U, Koo D, Park H 2019 ChemNanoMat 5 1050Google Scholar

    [50]

    Dasgupta U, Chatterjee S, Pal A J 2017 Sol. Energy Mater. Sol. Cells 172 353Google Scholar

    [51]

    Najafi L, Taheri B, Martín García B, Bellani S, Di Girolamo D, Agresti A, Oropesa Nuñez R, Pescetelli S, Vesce L, Calabrò E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [52]

    Ahmed M I, Hussain Z, Khalid A, Amin H M N, Habib A 2016 Mater. Res. Express 3 045022Google Scholar

    [53]

    Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J J, Jeong U, Cho K 2019 J. Mater. Chem. A 7 7151Google Scholar

    [54]

    Huang P, Wang Z, Liu Y, Zhang K, Yuan L, Zhou Y, Song B, Li Y 2017 ACS Appl. Mater. Interfaces 9 25323Google Scholar

    [55]

    Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M, Maksudov T, Najafi L, Del Rio Castillo A E, Kioseoglou G, Stratakis E, Bonaccorso F, Kymakis E 2018 Adv. Energy Mater. 8 1702287Google Scholar

    [56]

    Ray R, Sarkar A S, Pal S K 2019 Sol. Energy 193 95Google Scholar

    [57]

    Deng Y L, Xu Z Y, Cai K, Ma F, Hou J, Peng S L 2019 Chin. Phys.B 28 098802Google Scholar

    [58]

    Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y 2017 Jpn. J. Appl. Phys. 56 08M

    [59]

    Jiang Q, Zhang X, You J 2018 Small 14 1801154Google Scholar

    [60]

    Zhu Z, Bai Y, Liu X, Chueh C C, Yang S, Jen A K Y 2016 Adv. Mater. 28 6478Google Scholar

    [61]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa Baena J P 2018 ACS Energy Letter. 3 773Google Scholar

    [62]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy 26 208Google Scholar

    [63]

    Dong Q, Li J, Shi Y, Chen M, Ono L K, Zhou K, Zhang C, Qi Y, Zhou Y, Padture N P, Wang L Z 2019 Adv. Energy Mater. 9 1900834

    [64]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [65]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [66]

    Guo Y, Li X, Kang L L, He X, Ren Z Q, Wu J D, Qi J Y 2016 RSC Adv. 6 62522Google Scholar

    [67]

    Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M 2019 Joule 3 1963Google Scholar

    [68]

    Liu C, Hu M, Zhou X, Wu J, Zhang L, Kong W, Li X, Zhao X, Dai S, Xu B, Cheng C 2018 NPG Asia. Mater. 10 552Google Scholar

    [69]

    Liu C, Wang K, Du P, Wang E, Gong X, Heeger A J 2015 Nanoscale 7 16460Google Scholar

    [70]

    宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 052901Google Scholar

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901Google Scholar

    [71]

    Dharani S, Mulmudi H K, Yantara N, Thu Trang P T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675Google Scholar

    [72]

    Yu J, Chen X, Wang Y, Zhou H, Xue M, Xu Y, Li Z, Ye C, Zhang J, van Aken P A, Lund P D, Wang H 2016 J.Mater.Chem.C 4 7302Google Scholar

    [73]

    Zhou H, Yang L, Gui P, Grice C R, Song Z, Wang H, Fang G 2019 Sol. Energy Mater. Sol. Cells 193 246Google Scholar

    [74]

    Gu Z, Chen F, Zhang X, Liu Y, Fan C, Wu G, Li H, Chen H 2015 Sol. Energy Mater. Sol. Cells 140 396Google Scholar

    [75]

    Gao X, Li J, Baker J, Hou Y, Guan D, Chen J, Yuan C 2014 Chem. Commun (Camb) 50 6368Google Scholar

    [76]

    Gao X, Li J, Gollon S, Qiu M, Guan D, Guo X, Chen J, Yuan C 2017 Phys. Chem. Chem. Phys. 19 4956Google Scholar

    [77]

    Liu Z, Zhang M, Xu X, Cai F, Yuan H, Bu L, Li W, Zhu A, Zhao Z, Wang M, Cheng Y B, He H 2015 J. Mater. Chem. A 3 24121Google Scholar

    [78]

    Choi D H, Nam S K, Jung K, Moon J H 2019 Nano Energy 56 365Google Scholar

    [79]

    He J, Wu J, Hu S, Shen H, Hu X 2019 Opt. Mater. 88 689Google Scholar

    [80]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [81]

    Baek S W, Noh J, Lee C H, Kim B, Seo M K, Lee J Y 2013 Sci. Rep. 3 1726

    [82]

    Carretero Palacios S, Calvo M E, Míguez H 2015 J. Phys. Chem. 119 18635

    [83]

    Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y, Yang J 2016 J. Phys. Chem. C 120 6996Google Scholar

    [84]

    Sawanta S M, Chang S S, Chang K H 2016 Nanoscale 8 2664

    [85]

    Balakrishnan S K, Kamat P V 2016 ACS Energy Lett. 2 88

    [86]

    Han N, Ji T, Wang W, Li G, Li Z, Hao Y, Wu Y, Cui Y 2019 Org. Electron. 74 190Google Scholar

    [87]

    Hsu H L, Juang T Y, Chen C P, Hsieh C M, Yang C C, Huang C L, Jeng R J 2015 Sol. Energy Mater. Sol. Cells 140 224Google Scholar

    [88]

    Nourolahi H, Behjat A, Hosseini Zarch S M M, Bolorizadeh M A 2016 Sol. Energy 139 475Google Scholar

    [89]

    Zhang X, Liu J, Kou D, Zhou W, Zhou Z, Tian Q, Meng Y, Wu S, Cao A, Ouyang C 2017 Solar RRL 1 1700151Google Scholar

    [90]

    Kakavelakis G, Alexaki K, Stratakis E, Kymakis E 2017 RSC Advances 7 12998Google Scholar

    [91]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [92]

    Lu Z L, Pan X J, Ma Y Z, Li Y, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, Huang Y D, Xiao L X, Qi H G 2015 RSC Adv. 5 11175

    [93]

    Ye T, Ma S, Jiang X, Wei L, Vijila C, Ramakrishna S 2017 Adv. Funct. Mater. 27 1606545Google Scholar

    [94]

    Chueh C C, Li C Z, Jen A K Y 2015 Energy. Environ. Sci. 8 1160Google Scholar

    [95]

    Wen X R, Wu J M, Ye M D, Gao D, Lin C J 2016 Chem. Commun. 52 11355

    [96]

    Yavari M, Mazloum Ardakani M, Gholipour S, Tavakoli M M, Taghavinia N, Hagfeldt A, Tress W 2018 ACS Omega 3 5038Google Scholar

    [97]

    Li G, Deng S, Zhang M, Chen R, Xu P, Wong M, Kwok H S 2018 Solar RRL 2 1800151Google Scholar

    [98]

    Zhang F, Song J, Hu R, Xiang Y, He J, Hao Y, Lian J, Zhang B, Zeng P, Qu J 2018 Small 14 e1704007Google Scholar

    [99]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T 2017 ChemSusChem 10 2473Google Scholar

    [100]

    Wang Q, Dong Q, Li T, Gruverman A, Huang J 2016 Adv. Mater. 28 6734Google Scholar

    [101]

    Xiong H, Giovanni DeLucab, Rui Y C, Zhang B X, Li Y G, Zhang Q H, Wang H Z, Elsa Reichmanis 2018 ACS Appl. Mater. Interfaces 10 35385Google Scholar

    [102]

    Yang J a, Qin T, Xie L, Liao K, Li T, Hao F 2019 J. Mater. Chem.C 7 10724Google Scholar

    [103]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [104]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [105]

    Wu Q W, Yang Z B, Peter N. Rudd, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [106]

    Chen L, Xie X, Liu Z, Lee E C 2017 J. Mater. Chem. A 5 6974Google Scholar

    [107]

    Yao K, Wang X, Xu Y x, Li F, Zhou L 2016 Chem. Mater. 28 3131Google Scholar

    [108]

    Cohen B E, Wierzbowska M, Etgar L 2017 Adv. Funct. Mater. 27 1604733Google Scholar

    [109]

    周立, 朱俊, 徐亚峰, 邵志鹏, 张旭辉, 叶加久, 黄阳, 张昌能, 戴松元 2016 物理化学学报 32 1207Google Scholar

    Zhou L, Zhu J, Xu Y F, Shao Z P, Zhang X H, Ye J J, Huang Y, Zhang C N, Dai S Y 2016 Acta Phys. Sin. 32 1207Google Scholar

    [110]

    Malgorzata Kot, Chittaranjan Das, Wang Z P, Karsten Henkel, Zied Rouissi, Konrad Wojciechowski, Henry J Snaith, Schmeisser D 2016 ChemSusChem 9 1Google Scholar

    [111]

    Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z, Zhang Y 2016 Nano Energy 22 223Google Scholar

    [112]

    Sutherland B R, Johnston A K, Ip A H, Xu J, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photonics 2 1117Google Scholar

    [113]

    Yu X, Chen S, Yan K, Cai X, Hu H, Peng M, Chen B, Dong B, Gao X, Zou D 2016 J. Power Sources 325 534Google Scholar

    [114]

    Cheng N, Liu P, Bai S, Yu Z, Liu W, Guo S S, Zhao X Z 2016 J. Power Sources 321 71Google Scholar

    [115]

    Ma C, Shi Y, Hu W, Chiu M H, Liu Z, Bera A, Li F, Wang H, Li L J, Wu T 2016 Adv. Mater. 28 3683Google Scholar

    [116]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41Google Scholar

    [117]

    Yao Z, Yang Z, Liu Y, Zhao W, Zhang X, Liu B, Wu H, Liu S 2017 Rsc Adv. 7 38155Google Scholar

    [118]

    Chuantian Z, Liming D 2017 Angew. Chem. 129 6628Google Scholar

  • [1] 常静, 陈基. 一维纳米限域物质的结构. 物理学报, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [2] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [3] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [4] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [6] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [7] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [8] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [9] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [10] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [12] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [13] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [14] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [15] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [17] 韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究. 物理学报, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [18] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [19] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [20] 邓新华, 刘念华, 刘根泉. 单负材料光子晶体异质结构的频率响应. 物理学报, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
计量
  • 文章访问数:  10113
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-05-15
  • 上网日期:  2020-05-22
  • 刊出日期:  2020-08-20

/

返回文章
返回