搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性

张爱霞 姜艳芳 薛具奎

引用本文:
Citation:

光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性

张爱霞, 姜艳芳, 薛具奎

Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice

Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui
PDF
HTML
导出引用
  • 通过两模近似和变分法, 研究了光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱结构和流密度. 研究发现, 当系统参数满足一定条件时, 能谱结构在布里渊区的边界处会出现loop结构, 其中光晶格和拉曼耦合会抑制loop结构的出现, 而自旋轨道耦合和原子间相互作用会促进loop结构的产生, 并使能带结构变得更加复杂. 此外, 能带结构的变化与凝聚体的流密度密切相关, 自旋轨道耦合会使不同自旋态的流密度在动量空间的分布呈现强烈的不对称性并发生分离, 而光晶格和拉曼耦合会减弱这种不对称性, 使不同自旋态的流密度重合. loop结构破坏了系统的Bloch振荡, 使系统发生Landau-Zener隧穿, 而不同自旋态流密度在动量空间分布的分离意味着自旋交换动力学的发生.
    In a recent experiment [Hamner C, et al. 2015 Phys. Rev. Lett. 114 070401], spin-orbit coupled Bose-Einstein condensates in a translating optical lattice have been successfully prepared into any Bloch band, and directly proved to be the lack of Galilean invariance in the presence of the spin-orbit coupling. The energy band structure of the system becomes complicated because of the lack of Galilean invariance. At present, the energy band structure of the spin-orbit coupled Bose-Einstein condensates in optical lattice is still an open issue, especially the theoretical evidence for the in-depth understanding of the competition mechanism among the spin-orbit coupling, the Raman coupling, the optical lattice and the atomic interactions of the nonlinear energy band structure has not been clear yet.In this paper, based on the two-mode approximation and variational analysis, the nonlinear energy band structure and current density of the spin-orbit coupled Bose-Einstein condensates in the one-dimensional optical lattice are investigated. We find that when the spin-orbit coupling, the Raman coupling, the optical lattice, and the atomic interactions satisfy certain conditions, a loop structure in the Brillouin zone edge will emerge. The critical condition for the loop structure emerging in the Brillouin zone edge is obtained in a parameter space. The Raman coupling and the optical lattice suppress the emergence of the loop structure, while the spin-orbit coupling and the atomic interactions promote the emerging of the loop structure and make the energy band structure more complex. Interestingly, the atomic interactions can make the loop structure occur at both the higher-lying bands and the lowest energy band. The energy band structure is closely related to the current density of the system. The spin-orbit coupling causes the current density to be strongly asymmetric and leads the current density distributions of different spin states to be separated from each other in the momentum space near the boundary of the Brillouin zone. The optical lattice strength and the Raman coupling can weaken the asymmetry. The appearance of loop structure breaks the Bloch oscillation and gives rise to the Landau-Zener tunneling. The separation of the current density distributions of different spin states in the momentum space means the emergence of the spin exchange dynamics. Our results are beneficial to the in-depth understanding of the nonlinear dynamics of the spin-orbit coupled Bose-Einstein condensates in optical lattice.
      通信作者: 张爱霞, zhangax@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11764039, 11847304, 11865014, 11475027, 11305132, 11274255)、甘肃省自然科学基金(批准号: 17JR5RA076)和甘肃省高等学校科研基金(批准号: 2016A-005)资助的课题
      Corresponding author: Zhang Ai-Xia, zhangax@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Foundation of the High Education Institutions of Gansu Province, China (Grant No. 2016A-005)
    [1]

    Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783Google Scholar

    [2]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W 2017 Nat. Phys. 13 1195Google Scholar

    [3]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y J, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [4]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J Wei 2020 Nature 587 392Google Scholar

    [5]

    Diakonov D, Jensen L M, Pethick C J, Smith H 2002 Phys. Rev. A 66 013604

    [6]

    Wu B, Diener R B, Niu Q 2002 Phys. Rev. A 65 025601Google Scholar

    [7]

    Dahan M B, Peik E, Reichel J, Castin Y, Salomon C 1996 Phys. Rev. Lett. 76 4508Google Scholar

    [8]

    Ji W, Zhang K, Zhang W, Zhou L 2019 Phys. Rev. A 99 023604Google Scholar

    [9]

    Choi D I, Wu B 2003 Phys. Lett. A 318 558Google Scholar

    [10]

    Ciampini D, Anderlini M, Müller J H, Fuso F, Morsch O, Thomsen J W, Arimondo E 2002 Phys. Rev. A 66 043409Google Scholar

    [11]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402Google Scholar

    [12]

    Konotop V V, Kevrekidis P G, Salerno M 2005 Phys. Rev. A 72 023611Google Scholar

    [13]

    Zobay O, Garraway B M 1999 Phys. Rev. A 61 033603Google Scholar

    [14]

    Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, Müller J H, Courtade E, Anderlini M, Arimondo E 2003 Phys. Rev. Lett. 91 230406Google Scholar

    [15]

    Zhang X, Xu X, Zheng Y, Chen Z, Liu B, Huang C, Malomed B A, Li Y 2019 Phys. Rev. Lett. 123 133901Google Scholar

    [16]

    Zeng L, Zeng J 2019 Adv. Photonics 1 046004Google Scholar

    [17]

    Niu L, Jin S, Chen X, Li X, Zhou X 2018 Phys. Rev. Lett. 121 265301Google Scholar

    [18]

    Stöeferle T, Moritz H, Schori C, Köhl M, Esslinger T 2004 Phys. Rev. Lett. 92 130403Google Scholar

    [19]

    Machholm M, Pethick C J, Smith H 2003 Phys. Rev. A 67 053613Google Scholar

    [20]

    Lin Y Y, Lee R K, Kao Y M, Jiang T F 2008 Phys. Rev. A 78 023629Google Scholar

    [21]

    Hui H Y, Barnett R, Porto J V, Sarma S D 2012 Phys. Rev. A 86 063636Google Scholar

    [22]

    Chen Yan, Wang H T, Chen Y 2010 J. Phys. B 43 225303Google Scholar

    [23]

    Seaman B T, Carr L D, Holland M J 2005 Phys. Rev. A 71 033622Google Scholar

    [24]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [25]

    Gong B, Li S, Zhang X H, Liu B, Yi W 2019 Phys. Rev. A 99 012703Google Scholar

    [26]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [27]

    Koller S B, Goldschmidt E A, Brown R C, Wyllie R, Wilson R M, Porto J V 2016 Phys. Rev. A 94 063634Google Scholar

    [28]

    Mateo A M, Delgado V, Guilleumas M, Mayol R, Brand J 2019 Phys. Rev. A 99 023630Google Scholar

    [29]

    Kühn S, Judd T E 2013 Phys. Rev. A 87 023608Google Scholar

    [30]

    Watanabe G, Yoon S, Dalfovo F 2011 Phys. Rev. Lett. 107 270404Google Scholar

    [31]

    Rosenkranz M, Jaksch D 2008 Phys. Rev. A 77 063607Google Scholar

    [32]

    Witthaut D, Trimborn F, Kegel V, Korsch H J 2011 Phys. Rev. A 83 013609Google Scholar

    [33]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [34]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [35]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [36]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [37]

    Hamner C, Zhang Y, Khamehchi M A, Davis M J, Engels P 2015 Phys. Rev. Lett. 114 070401Google Scholar

    [38]

    Chen Z, Liang Z 2016 Phys. Rev. A 93 013601Google Scholar

    [39]

    Martone G I 2017 J. Low Temp. Phys. 189 262Google Scholar

    [40]

    Martone G I, Ozawa T, Qu C, Stringari S 2016 Phys. Rev. A 94 043629Google Scholar

    [41]

    Zhang Y, Zhang C 2013 Phys. Rev. A 87 023611Google Scholar

    [42]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

  • 图 1  不同系统参数下的非线性能谱结构. 每副子图中不同的颜色代表不同的光晶格强度, $ V_{0} = 0.05 $ (红色), $ 0.2 $ (绿色), $ 0.4 $ (蓝色). 能量最小值处用不同颜色的小球表示. 其他参数: $g = 0.2, \;g_{12} = 0.1$

    Fig. 1.  Nonlinear energy band structure for different system parameter. Different colored curves in every subplots correspond to different optical lattice strength, $ V_{0} = 0.05 $ (red), $ 0.2 $ (green), $ 0.4 $ (blue). The energy minima is indicated by different colored ball. The other parameters are $ g = 0.2 $ and $ g_{12} = 0.1 $.

    图 2  不同拉曼耦合$\varOmega$下的极化图. 其他参数: $g = 0.2, $$ g_{12} = 0.1, V_{0} = 0.4$

    Fig. 2.  Spin polarization $ s $ as a function of Raman coupling $ \varOmega $ for different $ k_{0} $. The other parameters are $ g = 0.2 $, $ g_{12} = 0.1 $ and $ V_{0} = 0.4 $.

    图 3  不同种间原子间相互作用$ g_{12} $下的非线性能谱结构. 其他参数: $\varOmega = 0.1$, $ k_{0} = 0.2 $, $ V_{0} = 0.1 $, $ g = 0.1 $

    Fig. 3.  Nonlinear energy band structure for different interspecies interaction $ g_ {12} $. The other parameters are $ \varOmega = 1.0 $, $ k_{0} = 0.4 $, $ g = 0.2 $ and $ g_{12} = 0.1 $.

    图 4  $ g = 0.2 $时最低能带出现loop 的临界$ \varOmega $, (b) 中不同形状的符号表示相应光晶格强度下(9)式给出的理论值

    Fig. 4.  Critical condition for appearing the loop structure in the lowest energy band at $ g = 0.2 $. The different symbols in panel (b) represent the theoretical values given by Eq. (9) under the corresponding optical lattice strength.

    图 5  不同自旋轨道耦合$ k_{0} $和光晶格强度$ V_{0} $下的凝聚体流密度. 其他参数: $ \varOmega = 0.15 $, $ g = 0.2 $, $ g_{12} = 0.1 $. 图中红色和黑色的线表示不同自旋态的凝聚体流密度

    Fig. 5.  Current density for different spin-orbit coupling $ k_{0} $ and optical lattice strength $ V_{0} $. The other parameters are $ \varOmega = 0.15 $, $ g = 0.2 $ and $ g_{12} = 0.1 $. The red and black lines represent the current density of different spin states.

    图 6  不同拉曼耦合$ \varOmega $下的能带和相应的凝聚体流密度. 其他参数: $ V_{0} = 0.05 $, $ g = 0.2 $, $ g_{12} = 0.1 $. 图中红色和黑色的线表示不同自旋态的流密度

    Fig. 6.  Energy band and current density for different Raman coupling $ \varOmega $. The other parameters are $ V_{0} = 0.05 $, $ g = 0.2 $ and $ g_{12} = 0.1 $. The red and black lines represent the current density of different spin states.

  • [1]

    Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783Google Scholar

    [2]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W 2017 Nat. Phys. 13 1195Google Scholar

    [3]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y J, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [4]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J Wei 2020 Nature 587 392Google Scholar

    [5]

    Diakonov D, Jensen L M, Pethick C J, Smith H 2002 Phys. Rev. A 66 013604

    [6]

    Wu B, Diener R B, Niu Q 2002 Phys. Rev. A 65 025601Google Scholar

    [7]

    Dahan M B, Peik E, Reichel J, Castin Y, Salomon C 1996 Phys. Rev. Lett. 76 4508Google Scholar

    [8]

    Ji W, Zhang K, Zhang W, Zhou L 2019 Phys. Rev. A 99 023604Google Scholar

    [9]

    Choi D I, Wu B 2003 Phys. Lett. A 318 558Google Scholar

    [10]

    Ciampini D, Anderlini M, Müller J H, Fuso F, Morsch O, Thomsen J W, Arimondo E 2002 Phys. Rev. A 66 043409Google Scholar

    [11]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402Google Scholar

    [12]

    Konotop V V, Kevrekidis P G, Salerno M 2005 Phys. Rev. A 72 023611Google Scholar

    [13]

    Zobay O, Garraway B M 1999 Phys. Rev. A 61 033603Google Scholar

    [14]

    Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, Müller J H, Courtade E, Anderlini M, Arimondo E 2003 Phys. Rev. Lett. 91 230406Google Scholar

    [15]

    Zhang X, Xu X, Zheng Y, Chen Z, Liu B, Huang C, Malomed B A, Li Y 2019 Phys. Rev. Lett. 123 133901Google Scholar

    [16]

    Zeng L, Zeng J 2019 Adv. Photonics 1 046004Google Scholar

    [17]

    Niu L, Jin S, Chen X, Li X, Zhou X 2018 Phys. Rev. Lett. 121 265301Google Scholar

    [18]

    Stöeferle T, Moritz H, Schori C, Köhl M, Esslinger T 2004 Phys. Rev. Lett. 92 130403Google Scholar

    [19]

    Machholm M, Pethick C J, Smith H 2003 Phys. Rev. A 67 053613Google Scholar

    [20]

    Lin Y Y, Lee R K, Kao Y M, Jiang T F 2008 Phys. Rev. A 78 023629Google Scholar

    [21]

    Hui H Y, Barnett R, Porto J V, Sarma S D 2012 Phys. Rev. A 86 063636Google Scholar

    [22]

    Chen Yan, Wang H T, Chen Y 2010 J. Phys. B 43 225303Google Scholar

    [23]

    Seaman B T, Carr L D, Holland M J 2005 Phys. Rev. A 71 033622Google Scholar

    [24]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [25]

    Gong B, Li S, Zhang X H, Liu B, Yi W 2019 Phys. Rev. A 99 012703Google Scholar

    [26]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [27]

    Koller S B, Goldschmidt E A, Brown R C, Wyllie R, Wilson R M, Porto J V 2016 Phys. Rev. A 94 063634Google Scholar

    [28]

    Mateo A M, Delgado V, Guilleumas M, Mayol R, Brand J 2019 Phys. Rev. A 99 023630Google Scholar

    [29]

    Kühn S, Judd T E 2013 Phys. Rev. A 87 023608Google Scholar

    [30]

    Watanabe G, Yoon S, Dalfovo F 2011 Phys. Rev. Lett. 107 270404Google Scholar

    [31]

    Rosenkranz M, Jaksch D 2008 Phys. Rev. A 77 063607Google Scholar

    [32]

    Witthaut D, Trimborn F, Kegel V, Korsch H J 2011 Phys. Rev. A 83 013609Google Scholar

    [33]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [34]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [35]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [36]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [37]

    Hamner C, Zhang Y, Khamehchi M A, Davis M J, Engels P 2015 Phys. Rev. Lett. 114 070401Google Scholar

    [38]

    Chen Z, Liang Z 2016 Phys. Rev. A 93 013601Google Scholar

    [39]

    Martone G I 2017 J. Low Temp. Phys. 189 262Google Scholar

    [40]

    Martone G I, Ozawa T, Qu C, Stringari S 2016 Phys. Rev. A 94 043629Google Scholar

    [41]

    Zhang Y, Zhang C 2013 Phys. Rev. A 87 023611Google Scholar

    [42]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

  • [1] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [2] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [3] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链. 物理学报, 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [4] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [5] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变. 物理学报, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [6] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [7] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [8] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [9] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [10] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [11] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [15] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [16] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [17] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [18] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [19] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  4192
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-26
  • 上网日期:  2021-09-30
  • 刊出日期:  2021-10-20

/

返回文章
返回