-
温度传感器是应用最广泛的传感器之一. 随着科技的不断发展, 温度传感器在医学、工业、航空及民用领域都得到了广泛的应用. 与传统的温度传感器如热电阻、热电偶传感器相比, 半导体温度传感器具有灵敏度高、体积小、功耗低、抗干扰能力强等诸多优点, 无论输出信号是电压、电流还是频率, 在一定的温度范围内都可与温度成线性关系[1].
然而在高温测量领域中, 使用传统的半导体材料制作的温度传感器已经逐渐不能满足社会对它的需求. 例如当涉及高热预算时, Si的半导体特性会发生变化, 从而使得大部分Si基器件的工作温度不适合超过150 ℃[2,3]. GaN材料具有优良的特性: 大禁带宽度、高电子饱和速率和高击穿电场; 制作的器件具有良好的电学特性: 高击穿电压和低的漏电流等, 可以在高温、高压、高频与强辐照的环境中工作[4,5]. GaN基器件的工作温度可以达到600 ℃以上, 这是传统Si材料器件无法比拟的. 而与其他的一些半导体温度传感器相比, GaN基高电子迁移率晶体管(HEMT)温度传感器的主要优势是由于高的二维电子气(2DEG)浓度和高的载流子迁移率[6,7]带来的高灵敏度. 由于近年来GaN基器件的快速发展, GaN基HEMT温度传感器在航空航天、化学工业、矿物开采加工等领域也有着广泛的应用前景.
2014年, Kwan等[8]展示了利用单片集成的GaN器件得到了高度线性的温度-电压关系. 2016年, Rao等[9]设计并制造了一个基于4H-SiC的p-i-n二极管温度传感器, 测量温度高达300 ℃, 最大灵敏度为2.66 mV/℃. 2017年, Matthus等[10]制造的4H-SiC p-i-n二极管具有4.5 mV/℃的极高灵敏度, 测温范围为室温到460 ℃. 同年, Madhusoodhanan等[11]制作了GaN-on-SiC异质结二极管并在室温到400 ℃进行了测试, 灵敏度最高为2.25 mV/℃. 2019年, Pristavu等[12]制备了Ni/4H-SiC肖特基二极管温度传感器, 并在室温到450 ℃内进行了测试, 器件表现出了稳定的灵敏度(最高2.33 mV/℃)和出色的线性度. 表1列出了近年来发表的一些高温半导体温度传感器的器件参数.
表 1 一些不同结构的半导体高温温度传感器
Table 1. Some semiconductor high temperature sensors in various structures.
本文设计并制造了无栅AlGaN/GaN HEMT温度传感器, 并对其特性进行了表征, 这在目前发表的一些GaN HEMT器件相关的文章中是很少见的. 该器件由具有GaN帽层的AlGaN/GaN异质结构材料制备而成. 文中给出了器件随温度变化的输出特性曲线, 并利用实验与理论分析结合的方式给出了器件灵敏度随沟道长度的变化关系, 同时研究了器件的高温保持稳定性.
-
实验中使用的AlGaN/GaN异质结材料是在蓝宝石衬底上外延生长的, 外延层从下至上包括大于1 μm 的GaN缓冲层, 大于150 nm的GaN沟道层, 20 nm的Al0.25Ga0.75N层和2.5 nm的GaN帽层. 经室温下的霍尔测试得到: 外延片的方块电阻为300 Ω/□, 2DEG浓度为1.4 × 1013 cm–2, 霍尔迁移率为1350 cm2/(V·s). 器件结构为无栅HEMT结构. 用热蒸发的方法制备了Ti/Al/Ni/Au (20 nm/100 nm/50 nm/100 nm)源漏电极, 电极形状为直径0.8 mm的圆形, 在N2氛围下830 ℃退火50 s形成了欧姆接触. 器件结构示意图如下图1所示.
-
实验中利用kethely2611源表对器件的电学特性进行了测试. 使用HP-1010加热台为器件加热, 在50—400 ℃范围内测试器件的变温电流-电压(I-V)特性. 在研究器件的高温保持稳定性过程中, 将器件在管式炉中分别加热到300 ℃, 400 ℃, 500 ℃并保持1 h, 比较了加热前后样品电学特性的变化.
-
对HEMT器件, 在漏源之间施加电压后, 设沿沟道方向电势为V(x), 则有
$ {{e}}{n_{\rm{s}}} = \frac{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}(m)}}{{{{\rm{d}}_{{\rm{AlGaN}}}}\left({m,T}\right)}}\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {{{m}},{T}} \right) - V\left( {{x}} \right)} \right), $ 其中e为电子电量, ns为2DEG的浓度, ε0为真空介电常数, εAlGaN为AlGaN层的相对介电常数, m为铝组分, T为开氏温度, dAlGaN为AlGaN层的厚度, VG为栅压(下文的计算中认为栅压为0). 因此
$\begin{split} {I_{{\rm{DS}}}} =\; & W\mu \left( T \right)\frac{{\left. {{\rm{d}}V({{x}}} \right)}}{{\left. {{\rm{d}}({{x}}} \right)}}\frac{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}\left( m \right)}}{{{d_{{\rm{AlGaN}}}}\left( {m,T} \right)}}\\ & \times\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {m,T} \right) - V\left( {{x}} \right)} \right),\end{split}$ 其中μ为2DEG的迁移率, VT阈值电压是一个与m和T有关的量, 对(2)式两端由源端向漏端积分, 即可得到
$\begin{split} {I_{{\rm{DS}}}} =\; & \frac{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}\left( m \right)\mu \left( T \right)W}}{{2L{d_{{\rm{AlGaN}}}}\left( {m,T} \right)}}\\ & \times\left[ {2\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {m,T} \right)} \right){V_{{\rm{DS}}}} - V_{{\rm{DS}}}^2} \right]\end{split}$ 其中W为沟道的宽度, 与电极的宽度一致, L为沟道长度. 在线性区, 即VDS
$\ll (V_{\rm G}-V_{\rm T})$ 时, 可以简化为$ {I_{{\rm{DS}}}}{\rm{ = }}\frac{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}\mu \left( T \right)W}}{{L{d_{{\rm{AlGaN}}}}\left( {m,T} \right)}}\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {m,T} \right)} \right){V_{{\rm{DS}}}}, $ 即:
$ {V_{{\rm{DS}}}} = \frac{{L{d_{{\rm{AlGaN}}}}\left( {m,T} \right)}}{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}W\mu \left( T \right)\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {m,T} \right)} \right)}}{I_{{\rm{DS}}}}. $ 在保持恒流的模式下, (5)式两边对温度T求导, 即得到器件电压随温度变化的电压灵敏度的公式:
$ \frac{{{\rm{d}}{V_{{\rm{DS}}}}}}{{{\rm{d}}T}} = \frac{{{I_{{\rm{DS}}}}L}}{{{\varepsilon _0}{\varepsilon _{{\rm{AlGaN}}}}W}}{\left( {\frac{{{d_{{\rm{AlGaN}}}}\left( {m,T} \right)}}{{\mu \left( T \right)\left( {{V_{\rm{G}}} - {V_{\rm{T}}}\left( {m,T} \right)} \right)}}} \right)'}. $ 因此, 在线性区, 铝组分固定的情况下, 器件的I-V特性变化主要与μ, d, 以及VT随温度的变化有关, 而其本质上就是由于GaN基材料禁带宽度以及2DEG的迁移率[13]与浓度随温度的变化. 温度升高过程中, 由于AIGaN和GaN的热膨胀系数不同, 造成AlGaN层势垒层应变能减小, 从而导致极化电荷面密度和极化电场减小, 对2DEG的限制作用降低. 此外, 随温度上升, 电子热激发能(KbT)增大, 三角形势阱中的2DEG电子热激发到更高能态的几率增大, 2DEG电子体系的量子特征也会减弱. 而迁移率则是由于极化库伦场散射在AlGaN/GaN HEMT器件中所起的作用, 呈现出随温度的升高而下降的趋势[14].
当器件在线性区时, 迁移率随温度的变化可以用下述公式来简单描述[15]:
$ {\mu _{\rm{T}}} = {\mu _{300{\rm{K}}}}{\left( {\frac{T}{{300}}} \right)^{ - 1.6}}. $ 而阈值电压VT随温度的变化则可以由下面公式计算[15,16]:
$ \begin{split} {V_{\rm{T}}}\left( {T,m} \right) =\; & {\varphi _{\rm{B}}} - \Delta {E_{\rm{c}}}\left( {T,m} \right) \\ & - \frac{{{\sigma _{{\rm{pz}}}}\left( {T,m} \right){d_{{\rm{AlGaN}}}}}}{{{\varepsilon _{{\rm{AlGaN}}}}\left( m \right)}} - \frac{{q{N_{\rm{d}}}d_{{\rm{AlGaN}}}^2}}{{2{\varepsilon _{{\rm{AlGaN}}}}\left( m \right)}}, \end{split}$ $ \Delta {E_{\rm{c}}}\left( {T,m} \right) = 0.75\left( {E_{\rm g}^{{\rm{AlGaN}}}\left( {T,m} \right) - E_{\rm g}^{{\rm{GaN}}}\left( {T,m} \right)} \right), $ $\begin{split} E_{\rm g}^{{\rm{AlGaN}}}\left( {{{T}},{{m}}} \right) =\; & mE_{\rm g}^{{\rm{AlN}}}\left( {T,m} \right) + \left( {1 - m} \right)E_{\rm g}^{{\rm{GaN}}}\left( T \right)\\ & + m\left( {1 - m} \right),\\[-10pt]\end{split}$ $ E_{\rm g}^{{\rm{AlN}}}\left( T \right) = 6.34 - 1.799 \times {10^{ - 3}} \times \frac{{{T^2}}}{{T + 1462}}, $ $ E_{\rm g}^{{\rm{GaN}}}\left( T \right) = 3.582 - 9.09 \times {10^{ - 4}} \times \frac{{{T^2}}}{{T + 830}}, $ 其中μT与μ300 K分别为温度T和300 K下2DEG的迁移率, φB为肖特基势垒高度, ΔEc为AlGaN/GaN界面处的导带差, σpz为极化电荷面密度, Nd为AlGaN层的掺杂浓度, EgAlGaN, EgGaN
和EgAlN分别为AlGaN, GaN和AlN的禁带宽度. 利用上述模型对器件特性随温度变化进行了模拟计算, 考虑到材料的晶格常数随温度的变化较小(小于千分之一)[17], 因此计算中忽略了温度对AlGaN层厚度以及极化电荷面密度的影响, 表2中为拟合中一些参数的设定. 图2为器件的理论模拟结果, 可以看出固定电流(0.01 A)的情况下, 器件两端电压随温度不是线性变化的, 而使用E指数拟合方法可以很好的对器件电压随温度的变化进行拟合.
参数 μ300 K φB(m) Nd dAlGaN εAlGaN(m) 单位 cm2/(V·s) eV cm–3 nm ε0 值 1100 0.85+1.3 m 3 × 1017 20 10.4–0.3 m 表 2 拟合参数列表
Table 2. List of fitting parameters.
-
图3显示了HEMT器件在50—400 ℃范围内不同温度下的I-V特性曲线, 可以看出随着温度的升高, 漏电流随之逐渐降低, 这与相关文献中报导的结果相符[18,19]. 为了获得更高的器件灵敏度, 也考虑到分立器件对于功耗没有十分严苛的要求, 固定电流选择了尽可能大的0.01 A. 图4显示了器件在0.01 A时两端压降随温度的变化及E指数的拟合曲线, 由图中的数据可以计算得到拟合优度R2
[20]以评估实验测量值与其拟合值之间的一致性, E指数方法拟合的拟合优度R2为0.992, 这也验证了前文理论推导的结果. 通过对电压-温度关系的E指数拟合曲线求导后再积分取均值计算得出, 器件的平均灵敏度为44.5 mV/℃. 图 4 固定电流(0.01 A)下电压随温度的变化曲线与其拟合曲线
Figure 4. Curve and fitting curve of voltage changes with temperature at fixed current (0.01 A).
由(6)式可推知, 改变器件的L/W可以使器件的灵敏度随之变化, 随着L/W的增加, 器件的灵敏度也会随之增加, 而实验结果也证明了这一点. 如图5所示, HEMT温度传感器沟道长度从1.5 mm增加为2.3 mm时, L/W变为原来的1.53倍, 灵敏度也变为原来的1.39倍; 沟道长度从2.3 mm增加为4.5 mm时, L/W变为原来的1.96倍, 灵敏度也变为原来的1.59倍.
本文还研究了器件的高温保持稳定性问题. 图6与图7分别显示了器件在N2氛围和空气氛围中的高温保持稳定性, 分别测试了器件在300 ℃, 400 ℃和500 ℃下保持1 h后的I-V特性变化. 可以看出器件在高温下保持1 h后电学特性的变化范围在10%以内, 器件具有较好的高温保持稳定性. 器件性能的变化可能是由于热载流子效应或是金属电极与材料的相互扩散引起的[21,22], 具体的变化机制还需要进一步研究.
-
使用热蒸发方法制备了无栅AlGaN/GaN HEMT温度传感器并对器件的变温输出特性进行了测试. 实验显示器件在固定电流0.01 A时电压随温度的变化可以用E指数模型对其进行很好的拟合, 与理论分析结果相一致. 器件尺寸在6.1 mm × 0.8 mm时的灵敏度可以达到44.5 mV/℃. 改变器件的沟道长宽比L/W可以对器件的灵敏度进行调整, 灵敏度会随着L/W的增加而增大. 器件长时间处在300 ℃以上的高温空气和氮气氛围后电学特性变化不大, 具有较好的高温保持稳定性.
-
Semiconductor temperature sensors have been widely used in medical, industrial, aviation and civil fields due to their advantages such as high sensitivity, small size, low power consumption and strong anti-interference ability. However, most Si-based temperature sensors are not suitable for the application in high-temperature environments. The new AlGaN/GaN heterojunction material not only has a wide band gap, but also has a high two-dimensional electron gas concentration and carrier mobility. Therefore, the device made with it not only has good electrical properties, but also can be applied in ultra-high environments. In this paper, a temperature sensor based on gateless AlGaN/GaN high electron mobility transistor structure was fabricated and its temperature-dependent electrical properties were characterized. The temperature dependence of current-voltage characteristics of the device were tested from 50 to 400 °C. The sensitivity of the device was studied as a function of the channel aspect ratio of the device. The stability of electrical properties was characterized after heating in air and nitrogen at 300—500 °C for 1 hour. The theoretical and experimental results show that as the aspect ratio of the device increases, the sensitivity of the device increases. At a fixed current of 0.01 A, the average sensitivity of the device voltage with temperature changes is 44.5 mV/°C. Meanwhile, the good high temperature retention stability is shown during stability experiments.
-
Keywords:
- GaN /
- high electron mobility transistor /
- temperature sensor /
- sensitivity
[1] 张洵, 靳东明, 刘理天 2006 传感器与微系统 3 1
Google Scholar
Zhang X, Jin D M, Liu L T 2006 Transd. Microsys. Technol. 3 1
Google Scholar
[2] Rue B, Flandre D 2007 Proccedings 2007 IEEE International SOI Conference Indian Wells, CA, USA, Oct. 1−4, 2007 p111
[3] de Souza M, Rue B, Flandre D, Pavanello M A 2009 Proccedings 2009 IEEE International SOI Conference Foster City, CA, USA, Oct 5−8, 2009 p1
[4] Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105
Google Scholar
[5] 段宝兴, 杨银堂 2014 物理学报 63 057302
Google Scholar
Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302
Google Scholar
[6] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
Google Scholar
[7] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320
Google Scholar
Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320
Google Scholar
[8] Kwan A M H, Guan Y, Liu X S, Chen K J 2014 IEEE Trans. Electron Devices 61 2970
Google Scholar
[9] Rao S, Pangallo G, Della Corte F G 2016 IEEE Trans. Electron Devices 63 414
Google Scholar
[10] Matthus C D, Erlbacher T, Hess A, Bauer A J, Frey L 2017 IEEE Trans Electron Devices 64 3399
Google Scholar
[11] Madhusoodhanan S, Sandoval S, Zhao Y, Ware M E, Chen Z 2017 IEEE Electr Device Lett. 38 1105
Google Scholar
[12] Pristavu G, Brezeanu G, Pascu R, Draghici F, Badila M 2019 Mater. Sci. Semicond. Process. 94 64
Google Scholar
[13] 顾江, 王强, 鲁宏 2011 物理学报 60 077107
Google Scholar
Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107
Google Scholar
[14] 刘艳 2017 博士学位论文 (济南: 山东大学)
Liu Y 2017 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)
[15] Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid State Electron. 53 341
Google Scholar
[16] Yahyazadeh R, Hashempour Z 2010 27 th International Conference on Microelectronics (MIEL 2010) Nis, Serbia, May 16−19, 2010 p189
[17] Iwanaga H, Kunishige A, Takeuchi S 2000 J. Mater. Sci. 35 2451
Google Scholar
[18] Akita M, Kishimoto S, Mizutani T 2001 IEEE Electron Device Lett. 22 376
Google Scholar
[19] Chang Y C, Tong K Y, Surya C 2005 Semicond. Sci. Technol. 20 188
Google Scholar
[20] Nagelkerke N J D 1991 Biometrika 78 691
Google Scholar
[21] 任舰 2017 博士学位论文 (无锡: 江南大学)
Ren J 2017 Ph. D. Dissertation (Wuxi: Jiangnan University) (in Chinese)
[22] 陈伟伟 2016 博士学位论文 (西安: 西安电子科技大学)
Chen W W 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
-
表 1 一些不同结构的半导体高温温度传感器
Table 1. Some semiconductor high temperature sensors in various structures.
表 2 拟合参数列表
Table 2. List of fitting parameters.
参数 μ300 K φB(m) Nd dAlGaN εAlGaN(m) 单位 cm2/(V·s) eV cm–3 nm ε0 值 1100 0.85+1.3 m 3 × 1017 20 10.4–0.3 m -
[1] 张洵, 靳东明, 刘理天 2006 传感器与微系统 3 1
Google Scholar
Zhang X, Jin D M, Liu L T 2006 Transd. Microsys. Technol. 3 1
Google Scholar
[2] Rue B, Flandre D 2007 Proccedings 2007 IEEE International SOI Conference Indian Wells, CA, USA, Oct. 1−4, 2007 p111
[3] de Souza M, Rue B, Flandre D, Pavanello M A 2009 Proccedings 2009 IEEE International SOI Conference Foster City, CA, USA, Oct 5−8, 2009 p1
[4] Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105
Google Scholar
[5] 段宝兴, 杨银堂 2014 物理学报 63 057302
Google Scholar
Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302
Google Scholar
[6] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
Google Scholar
[7] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320
Google Scholar
Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320
Google Scholar
[8] Kwan A M H, Guan Y, Liu X S, Chen K J 2014 IEEE Trans. Electron Devices 61 2970
Google Scholar
[9] Rao S, Pangallo G, Della Corte F G 2016 IEEE Trans. Electron Devices 63 414
Google Scholar
[10] Matthus C D, Erlbacher T, Hess A, Bauer A J, Frey L 2017 IEEE Trans Electron Devices 64 3399
Google Scholar
[11] Madhusoodhanan S, Sandoval S, Zhao Y, Ware M E, Chen Z 2017 IEEE Electr Device Lett. 38 1105
Google Scholar
[12] Pristavu G, Brezeanu G, Pascu R, Draghici F, Badila M 2019 Mater. Sci. Semicond. Process. 94 64
Google Scholar
[13] 顾江, 王强, 鲁宏 2011 物理学报 60 077107
Google Scholar
Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107
Google Scholar
[14] 刘艳 2017 博士学位论文 (济南: 山东大学)
Liu Y 2017 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)
[15] Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid State Electron. 53 341
Google Scholar
[16] Yahyazadeh R, Hashempour Z 2010 27 th International Conference on Microelectronics (MIEL 2010) Nis, Serbia, May 16−19, 2010 p189
[17] Iwanaga H, Kunishige A, Takeuchi S 2000 J. Mater. Sci. 35 2451
Google Scholar
[18] Akita M, Kishimoto S, Mizutani T 2001 IEEE Electron Device Lett. 22 376
Google Scholar
[19] Chang Y C, Tong K Y, Surya C 2005 Semicond. Sci. Technol. 20 188
Google Scholar
[20] Nagelkerke N J D 1991 Biometrika 78 691
Google Scholar
[21] 任舰 2017 博士学位论文 (无锡: 江南大学)
Ren J 2017 Ph. D. Dissertation (Wuxi: Jiangnan University) (in Chinese)
[22] 陈伟伟 2016 博士学位论文 (西安: 西安电子科技大学)
Chen W W 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
计量
- 文章访问数: 5273
- PDF下载量: 92
- 被引次数: 0