搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过导纳谱表征铜铟镓硒电池中的缺陷

田小让 贾锐

引用本文:
Citation:

通过导纳谱表征铜铟镓硒电池中的缺陷

田小让, 贾锐

Characterization of defects in CIGSe solar cells through admittance spectroscopy

Tian Xiao-Rang, Jia Rui
PDF
HTML
导出引用
  • 本文通过导纳谱技术表征铜铟镓硒(CIGSe)太阳电池吸收层中缺陷的能量分布, 研究了 CIGSe太阳电池退火后效率提高的机理. 研究发现退火后CIGSe电池的暗电流减小了大约1个数量级, 电池的理想因子也从退火前的2.16减小到退火后的1.85. 在反向偏压下, 退火前CIGSe太阳电池的电容高于退火后的. 通过对电池的C-V特性进行1/C 2-V线性拟合获得退火前CIGSe电池吸收层中的自由载流子浓度高于退火后, 此外还获得了CIGSe电池退火前后的内建电压分别为0.52 V和0.64 V. 通过导纳谱的测试发现退火后吸收层中缺陷的激活能降低, 但是缺陷浓度几乎不变. 缺陷激活能的降低意味着铜铟镓硒太阳能电池中缺陷的SRH (Shockley-read-hall)复合概率降低, 因此退火后太阳能电池的开路电压和并联电阻的增大提高了电池的性能.
    We use admittance spectroscopy to characterize the energy distribution of defects in CIGSe solar cells before and after annealing to investigate the mechanism of the annealing process improving the performances of solar cells. In this work, we anneal the prepared CIGSe solar cells in compressed air at 150 ℃ for 10 min. We measure dark I-V, C-V, admittance spectra, and illumination I-V tests on CIGSe solar cells before and after annealing to characterize the changes in the performances of solar cells before and after annealing, respectively. The test results of dark I-V characteristics show that the reverse dark current of CIGSe solar cell decreases by about an order of magnitude after annealing, and the ideal factor of the cell also decreases from 2.16 (before annealing) to 1.85 (after annealing). This means that the annealing process reduces the recombination of carriers in CIGSe solar cell. Under reverse bias, the capacitance of CIGSe solar cell is higher than that after annealing, and its C-V characteristics linearly fitted with 1/C 2 vs. V. The fitting results show that the slope of the curve increases after annealing, which means that the annealing process results in a decrease in the free carrier concentration in the absorption layer of CIGSe solar cell, specifically, the carrier concentration contributed by defects after annealing decreases. In addition, the built-in potential before and after annealing of CIGSe solar cell are also obtained through fitting, which are 0.52 V and 0.64 V in value, respectively. The admittance spectrum test results of CIGSe solar cell before and after annealing show that the defect activation energy in the absorption layer significantly decreases after annealing, but the defect concentration remains almost unchanged. The decrease in defect activation energy means that the Shockley Read Hall (SRH) recombination probability of defects in copper indium gallium selenium solar cell decreases. In addition, the test results of the optical I-V characteristics of the battery indicate that the open circuit voltage and parallel resistance of the solar cell significantly increase after annealing, which is consistent with the test results of the dark I-V characteristics, C-V characteristics, and admittance spectroscopy of the solar cell. Therefore, the annealing process of CIGSe solar cells leads to theweakening of the SRH recombination of carriers in the absorption layer of the cell, thereby improving the performance of the solar cell.
      通信作者: 贾锐, imesolar@126.com
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500203-04, 2018YFB1500204-01, 2022YFF0709501)、国家自然科学基金(批准号: 12035020, 52072399, 62074165, 12175305, 62104253, 12105357) 和北京市自然科学基金(批准号: 4192064, 1212015)资助的课题.
      Corresponding author: Jia Rui, imesolar@126.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB1500203-04, 2018YFB1500204-01, 2022YFF0709501), the National Natural Science Foundation of China (Grant Nos. 12035020, 52072399, 62074165, 12175305, 62104253, 12105357), and the Natural Science Foundation of Beijing Municipality, China (Grant Nos. 4192064, 1212015).
    [1]

    Roulston D J, Arora N D, Chamberlain S G 1982 IEEE T. Electron Dev. 29 284Google Scholar

    [2]

    Lang D V 1974 J. Appl. Phys. 45 3023Google Scholar

    [3]

    Le Comber P G, Spear W E 1970 Phys. Rev. Lett. 25 509Google Scholar

    [4]

    Bailey J, Zapalac G, Poplavskyy D 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) Portland, OR, USA, June 5–10, 2016 p2135

    [5]

    Hartmann F 2017 Springer Tracts in Modern Physics (Heidelberg: Springer Berlin) p275

    [6]

    Bollmann J, Venter A 2018 Physica B 535 237Google Scholar

    [7]

    Huang J S, Yuan Y B, Shao Y C 2017 Nat. Rev. Mater. 2 17042

    [8]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Roca I, Cabarrocas P, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511–512 385Google Scholar

    [9]

    Walter T, Herberholz R, Müller C, Schock H W 1996 J. Appl. Phys. 80 4411Google Scholar

    [10]

    Liguori R, Rubino A, 2021 Mater Today Proc 44 2033.Google Scholar

    [11]

    Lee J, Cohen J D, Shafarman W N 2005 Thin Solid Films 480–481 336Google Scholar

    [12]

    Dueñas S, Jaraiz M, Vicente J, Rubio E, Bailón L, Barbolla J 1987 J. Appl. Phys. 61 2541Google Scholar

    [13]

    Burgelman M, Nollet P 2005 Solid State Ion. 176 2171Google Scholar

    [14]

    Baranov A I, Kudryashov D A, Uvarov A V, et al. 2021 Tech. Phys. Lett. 47 785Google Scholar

    [15]

    Karataş Ş, Türüt A 2004 Vacuum 74 45Google Scholar

    [16]

    Marin A T, Musselman K P, MacManus-Driscoll J L 2013 J. Appl. Phys. 113 144502Google Scholar

    [17]

    Kobayashi T, Kao Z J L, Nakada T 2015 Sol. Energy Mater Sol. Cells 143 159.Google Scholar

    [18]

    Werner F, Siebentritt S 2018 Phys. Rev. Appl. 9 054047Google Scholar

    [19]

    Heise S J, Hirwa H, Stölzel M, Dalibor T, Ohland J 2022 Thin Solid Films 759 1

    [20]

    Paul S, Lopez R, Repins I L, Li J V 2018 J. Vac. Sci. Technol. B 36 022904Google Scholar

    [21]

    Schroder D K 2015 Semiconductor Material and Device Characterization (John Wiley & Sons

    [22]

    Sah C T 1991 Fundamentals of Solid-State Electronics (Singapore: World Scientific Publishing Company

  • 图 1  CIGSe电池样品的结构示意图

    Fig. 1.  Structure diagram of CIGSe solar cells.

    图 2  (a) 待测器件的能带图和等效电路; (b) 器件在测试系统中的等效模型

    Fig. 2.  (a) Energy band and equivalent circuit diagrams of tested device; (b) test model diagram of equivalent circuit.

    图 3  CIGSe电池退后前后的暗态I-V特性

    Fig. 3.  Dark I-V characteristics of CIGSe solar cells before and after annealing.

    图 4  (a) CIGSe电池的C-V特性; (b) CIGSe电池的1/C 2-V特性曲线

    Fig. 4.  (a) C-V characteristics; (b) 1/C 2-V curve for CIGSe solar cell.

    图 5  不同温度下测试得到的C-f (上半部)和fdC/df谱线(下半部) (a) 退火前的CIGSe电池; (b) 退火后的CIGSe电池

    Fig. 5.  Capacitance vs. frequency spectra (top) and frequency derivative capacitance fdC/df spectra (bottom) measured at various temperatures: (a) Before annealing; (b) after annealing.

    图 6  CIGSe电池退火前后的阿伦乌尼斯图

    Fig. 6.  Arrhenius plots of CIGSe solar cells before and after annealing.

    图 7  CIGSe电池的缺陷浓度分布 (a) 退火前; (b) 退火后

    Fig. 7.  Defect concentration distribution for CIGSe layer: (a) Before annealing; (b) after annealing.

    图 8  CIGSe电池退火前后的光照I-V特性

    Fig. 8.  Light I-V curves of CIGSe solar cell before and after annealing.

  • [1]

    Roulston D J, Arora N D, Chamberlain S G 1982 IEEE T. Electron Dev. 29 284Google Scholar

    [2]

    Lang D V 1974 J. Appl. Phys. 45 3023Google Scholar

    [3]

    Le Comber P G, Spear W E 1970 Phys. Rev. Lett. 25 509Google Scholar

    [4]

    Bailey J, Zapalac G, Poplavskyy D 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) Portland, OR, USA, June 5–10, 2016 p2135

    [5]

    Hartmann F 2017 Springer Tracts in Modern Physics (Heidelberg: Springer Berlin) p275

    [6]

    Bollmann J, Venter A 2018 Physica B 535 237Google Scholar

    [7]

    Huang J S, Yuan Y B, Shao Y C 2017 Nat. Rev. Mater. 2 17042

    [8]

    Gudovskikh A S, Kleider J P, Damon-Lacoste J, Roca I, Cabarrocas P, Veschetti Y, Muller J C, Ribeyron P J, Rolland E 2006 Thin Solid Films 511–512 385Google Scholar

    [9]

    Walter T, Herberholz R, Müller C, Schock H W 1996 J. Appl. Phys. 80 4411Google Scholar

    [10]

    Liguori R, Rubino A, 2021 Mater Today Proc 44 2033.Google Scholar

    [11]

    Lee J, Cohen J D, Shafarman W N 2005 Thin Solid Films 480–481 336Google Scholar

    [12]

    Dueñas S, Jaraiz M, Vicente J, Rubio E, Bailón L, Barbolla J 1987 J. Appl. Phys. 61 2541Google Scholar

    [13]

    Burgelman M, Nollet P 2005 Solid State Ion. 176 2171Google Scholar

    [14]

    Baranov A I, Kudryashov D A, Uvarov A V, et al. 2021 Tech. Phys. Lett. 47 785Google Scholar

    [15]

    Karataş Ş, Türüt A 2004 Vacuum 74 45Google Scholar

    [16]

    Marin A T, Musselman K P, MacManus-Driscoll J L 2013 J. Appl. Phys. 113 144502Google Scholar

    [17]

    Kobayashi T, Kao Z J L, Nakada T 2015 Sol. Energy Mater Sol. Cells 143 159.Google Scholar

    [18]

    Werner F, Siebentritt S 2018 Phys. Rev. Appl. 9 054047Google Scholar

    [19]

    Heise S J, Hirwa H, Stölzel M, Dalibor T, Ohland J 2022 Thin Solid Films 759 1

    [20]

    Paul S, Lopez R, Repins I L, Li J V 2018 J. Vac. Sci. Technol. B 36 022904Google Scholar

    [21]

    Schroder D K 2015 Semiconductor Material and Device Characterization (John Wiley & Sons

    [22]

    Sah C T 1991 Fundamentals of Solid-State Electronics (Singapore: World Scientific Publishing Company

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [5] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [6] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [7] 肖友鹏, 高超, 王涛, 周浪. 载流子选择性接触:高效硅太阳电池的选择. 物理学报, 2017, 66(15): 158801. doi: 10.7498/aps.66.158801
    [8] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [9] 张鑫鑫, 靳映霞, 叶晓松, 王茺, 杨宇. 高速率沉积磁控溅射技术制备Ge点的退火生长研究. 物理学报, 2014, 63(15): 156802. doi: 10.7498/aps.63.156802
    [10] 刘芳芳, 何青, 周志强, 孙云. Cu元素对Cu(In, Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [11] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [12] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [13] 黎兵, 刘才, 冯良桓, 张静全, 郑家贵, 蔡亚平, 蔡伟, 武莉莉, 李卫, 雷智, 曾广根, 夏庚培. CdS/CdTe薄膜太阳电池的深能级瞬态谱和光致发光研究. 物理学报, 2009, 58(3): 1987-1991. doi: 10.7498/aps.58.1987
    [14] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [15] 沈 韩, 许 华, 陈 敏, 李景德. 钇掺杂钨酸铅晶体中的极化子和导纳谱. 物理学报, 2003, 52(12): 3125-3129. doi: 10.7498/aps.52.3125
    [16] 孟繁玲, 李永华, 徐耀, 王煜明. 小角x射线散射确定TiNi薄膜中晶化粒子的长大激活能. 物理学报, 2002, 51(9): 2086-2089. doi: 10.7498/aps.51.2086
    [17] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [18] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [19] 傅柔励, 马允胜, 孙鑫. 强耦合一维电子-晶格体系中孤子激活能. 物理学报, 1992, 41(7): 1143-1146. doi: 10.7498/aps.41.1143
    [20] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
计量
  • 文章访问数:  2658
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-05-16
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-09-05

/

返回文章
返回