搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚体中的淬火孤子与冲击波

贾瑞煜 方乒乒 高超 林机

引用本文:
Citation:

玻色-爱因斯坦凝聚体中的淬火孤子与冲击波

贾瑞煜, 方乒乒, 高超, 林机

Quenched solitons and shock waves in Bose-Einstein condensates

Jia Rui-Yu, Fang Ping-Ping, Gao Chao, Lin Ji
PDF
HTML
导出引用
  • 系统性地探讨了通过淬火相互作用在初态包含暗孤子的玻色-爱因斯坦凝聚体中产生量子冲击波的可能性及其内禀机制. 在淬火至无相互作用极限下, 解析得到了初始静止孤子的后续动力学, 发现了冲击波的存在, 并通过量子相干效应加以解释. 在淬火至有限相互作用下, 通过数值求解Gross-Piatevskii方程也发现了冲击波现象, 并且分析了不同情形: 往弱相互作用侧淬火时得到的冲击波与无相互作用情形类似; 往强相互作用侧淬火时得到的冲击波伴随着孤子的劈裂, 且两者存在同步变化关系. 进一步探究了冲击波的特性, 包括其振幅、速度, 并得到了其随淬火相互作用强度变化的全景图谱. 这一工作为实验上实现和观测冲击波提供了理论指导.
    The Bose-Einstein condensate (BEC) formed by ultracold atomic gases provides an ideal platform for studying various quantum phenomena. In this platform, researchers have explored in depth the important equilibrium and steady phenomena including superfluidity, vortices, and solitons, and recently started to study nonequilibrium problems. In a classical system, nonequilibrium problems, such as explosion, usually occur together with shock waves, which is presented when the explosion speed is larger than the local sound speed. For BEC systems which possess quantum properties, how to produce and understand the shock waves becomes a hot research topic. In this work, we systematically discuss the possibility of quantum shock wave and its essential mechanism in a one-dimensional BEC initially containing dark solitons through quenching interactions. When the system is quenched to the limit of non-interaction, we analytically obtain the post-quench dynamics of initially immobile dark solitons, and find the existence of shock wave, which can be explained through the quantum interference effect. When the system is quenched to finite interaction, we find similar phenomena through numerically solving the Gross-Pitaevskii equation, and analyze different situations. When the system is quenched to a finite weaker interaction, the situation is similar to a non-interaction case; when the system is quenched to a stronger interaction, the shock wave is accompanied by the splitting of the initial soliton, and the two objects can synchronously change; specifically when the quenched ratio of strength is an integer squared, the shock wave disappears, and the soliton is split perfectly. We further explore the properties of the shock wave including its amplitude and speed, and obtain the full scenario as the quenched interaction varies. This work provides theoretical guidance for realizing and measuring shock wave in experiment.
      通信作者: 高超, gaochao@zjnu.edu.cn ; 林机, linji@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11835011, 12074342)和浙江省基础公益研究计划(批准号: LY21A040004)资助的课题
      Corresponding author: Gao Chao, gaochao@zjnu.edu.cn ; Lin Ji, linji@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11835011, 12074342) and the Public Welfare Technology Application Research Project of Zhejiang Province, China (Grant No. LY21A040004)
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [2]

    Bradley C C, Sackett C A, Tollett J J 1995 Phys. Rev. Lett. 75 1687Google Scholar

    [3]

    Davis K B, Mewes M O, Andrews M R 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [4]

    Matthews M R, Anderson B P, Haljan P C 1999 Phys. Rev. Lett. 83 2498Google Scholar

    [5]

    Burger S, Bongs K, Dettmer S 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G 2003 New J. Phys. 5 73Google Scholar

    [7]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [8]

    Hamner C, Chang J J, Engels P 2011 Phys. Rev. Lett. 106 065302Google Scholar

    [9]

    Yan D, Chang J J, Hamner C 2011 Phys. Rev. A 84 053630Google Scholar

    [10]

    Kevrekidis P G, Frantzeskakis D J 2016 Rev. Phys. 1 140Google Scholar

    [11]

    Hoefer M A, Chang J J, Hamner C 2011 Phys. Rev. A 84 041605Google Scholar

    [12]

    Yan D, Chang J J, Hamner C 2012 J. Phys. B: At. Mol. Opt. 45 115301Google Scholar

    [13]

    Danaila I, Khamehchi M A, Gokhroo V 2016 Phys. Rev. A 94 053617Google Scholar

    [14]

    Chen P J, Gurtin M E 1971 Phys. Fluids 14 1091Google Scholar

    [15]

    Serrin J 1959 Mathematical Principles of Classical Fluid Mechanics (Berlin: Springer) p125

    [16]

    Smoller J, Temple B 2003 Proc. Natl. Acad. Sci. U.S.A. 100 11216Google Scholar

    [17]

    Quintanilla R, Straughan B A 2004 Math. Phys. Sci. 460 1169Google Scholar

    [18]

    Morro A 2006 Math. Comput. Modell. 43 138Google Scholar

    [19]

    Carusotto I, Artoni M, La Rocca G C 2001 Phys. Rev. Lett. 87 064801Google Scholar

    [20]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602Google Scholar

    [21]

    Carusotto I, Hu S X, Collins L A 2006 Phys. Rev. Lett. 97 260403Google Scholar

    [22]

    Rothenberg J E, Grischkowsky D 1989 Phys. Rev. Lett. 62 531Google Scholar

    [23]

    Couton G, Maillotte H, Chauvet M 2004 J. Opt. B: Quantum Semiclassical Opt. 6 223Google Scholar

    [24]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [25]

    Jia S, Wan W, Fleischer J W 2007 Phys. Rev. Lett. 99 223901Google Scholar

    [26]

    Barsi C, Wan W, Sun C 2007 Opt. Lett. 32 2930Google Scholar

    [27]

    Ghofraniha N, Conti C, Ruocco G 2007 Phys. Rev. Lett. 99 043903Google Scholar

    [28]

    Conti C, Fratalocchi A, Peccianti M 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [29]

    Ghofraniha N, Amato L S, Folli V 2012 Opt. Lett. 37 2325Google Scholar

    [30]

    Fatome J, Finot C, Millot G 2014 Phys. Rev. X 4 021022Google Scholar

    [31]

    Dutton Z, Budde M, Slowe C 2001 Science 293 663Google Scholar

    [32]

    Simula T P, Engels P, Coddington I 2005 Phys. Rev. Lett. 94 080404Google Scholar

    [33]

    Hoefer M A, Ablowitz M J, Coddington I 2006 Phys. Rev. A 74 023623Google Scholar

    [34]

    Chang J J, Engels P, Hoefer M A 2008 Phys. Rev. Lett. 101 170404Google Scholar

    [35]

    Hoefer M A, Engels P, Chang J J 2009 Physica D 238 1311Google Scholar

    [36]

    Meppelink R, Koller S B, Vogels J M 2009 Phys. Rev. A 80 043606Google Scholar

    [37]

    Damski B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 85Google Scholar

    [38]

    Pérez-García V M, Konotop V V, Brazhnyi V A 2004 Phys. Rev. Lett. 92 220403Google Scholar

    [39]

    Kamchatnov A M, Gammal A, Kraenkel R A 2004 Phys. Rev. A 69 063605Google Scholar

    [40]

    Joseph J A, Thomas J E, Kulkarni M 2011 Phys. Rev. Lett. 106 150401Google Scholar

    [41]

    Joseph R R, Rosales-Zárate L E C, Drummond P D 2018 Phys. Rev. A 98 013638Google Scholar

    [42]

    Mo Y C, Kishek R A, Feldman D 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [43]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [44]

    Pitaevskii L P 1961 Sov. Phys. JETP 13 451

    [45]

    Gross E P 1961 Nuovo Cimento 20 454Google Scholar

    [46]

    Gross E P 1963 J. Math. Phys. 4 195Google Scholar

    [47]

    Kamchatnov A M 2019 Phys. Rev. E 99 012203Google Scholar

    [48]

    Damski B 2004 Phys. Rev. A 69 043610Google Scholar

    [49]

    Simmons S A, Bayocboc Jr F A, Pillay J C 2020 Phys. Rev. Lett. 125 180401Google Scholar

    [50]

    Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp159−162, 216−222

    [51]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [52]

    Chin C, Grimm R, Julienne P 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [53]

    Gamayun O, Bezvershenko Y V, Cheianov V 2015 Phys. Rev. A 91 031605Google Scholar

  • 图 1  一维BEC中初始高斯波包的演化过程, 纵轴是密度$\rho(x, t)= {\vert\varPsi(x, t)\vert}^2$ (a)$\varPsi(x, 0)=\varPsi_0+2\exp(-x^2/\alpha^2)$; (b) $\varPsi(x, 0)=\varPsi_0-2\exp(-x^2/\alpha^2)$, 其中$\varPsi_0=3$, 高斯波包的宽度$\alpha=2$

    Fig. 1.  Evolution of an initial Gaussian packet in a one-dimensional BEC. The vertical axis is density $\rho(x, t) = $$ {\vert\varPsi(x, t)\vert}^2$: (a) $\varPsi(x, 0)=\varPsi_0+2\exp(-x^2/\alpha^2)$; (b) $\varPsi(x, 0)= $$ \varPsi_0-2\exp(-x^2/\alpha^2)$. $\varPsi_0=3$ and the width of Gaussian wave packet $\alpha=2$.

    图 2  $t = -10$$t= 0$, 暗孤子在凝聚体中稳定演化, 其中背景密度$n = 10$, 相互作用强度$g_1 = 1$. 而在$t = 0$时刻对系统进行了淬火, 将相互作用强度突变至$g_2= 0$, 此后在暗孤子两侧出现对称的激发, 这些激发以恒定速度向两侧运动, 中间孤子宽度变大

    Fig. 2.  From $t=-10$ to $t = 0$, the dark soliton evolves stably in the condensate, in which the background density is $n=10$ and the interaction intensity $g_1=1$. At $t=0$, the system is quenched, and the interaction intensity suddenly changes to $g_2=0$. After that, symmetric excitations appear on both sides of the dark soliton, which move to both sides at a constant speed, and the width of the intermediate soliton increases.

    图 3  (a)淬火后暗孤子演化至$t = \pi/20$时刻数值与解析对照图, 可以发现两者完全符合; (b) $t = \pi/20$时刻, 除去背景暗孤子淬火后的演化与不除去背景的比较, 在除去背景后冲击波消失

    Fig. 3.  (a) When the dark soliton evolves to $t = \pi/20$ after quenching, it can be found that they are completely consistent with the analytical comparison chart; (b) at $t = \pi/20$, the evolution of dark soliton after quenching with background removed is compared with that without background removed, and the shock wave disappears after background removed.

    图 4  淬火强度在$0\leqslant g_2/g_1 < 1$范围时冲击波的形成对比 (a)淬火至无相互作用强度下, 即$g_2/g_1=0$, 可以观察到在背景之上有波包的隆起, 并且伴随着与背景的振荡; (b)相互作用强度淬火前后比值$g_2/g_1 = 0.1$, 除了淬火比值不同外其他都与图(a)相同($n=10,\;g_1=1$); (c)相互作用强度淬火前后比值$g_2/g_1=0.9$, 其他参数与(a), (b)两图相同

    Fig. 4.  Comparison of shock wave formation when quenching strength is $0\leqslant g_2/g_1 < 1$: (a) For quenching to the strength without interaction, that is $g_2/g_1 = 0$, it can be observed that there is a bump above the background, accompanied by oscillation with the background; (b) ratio of interaction strength before and after quenching is $g_2/g_1 = 0.1$, values of other parameters are the same as those in panel (a) ($n = 10,\; g_1 = 1,\; m = 1$, $\hbar = 1$); (c) ratio of interaction strength before and after quenching is $g_2/g_1 = 0.9$, and values of other parameters are the same as those in panels (a) and (b).

    图 5  淬火强度$ g_2/g_1 > 1 $时冲击波的形成对比 (a)淬火相互作用强度为$ g_2/g_1 = 2 $; (b)淬火相互作用强度为$ g_2/g_1 = 8 $, 其他参数与4.1节相同

    Fig. 5.  Comparison of shock wave formation when quenching strength is $ g_2/g_1 > 1 $: (a) Quenching interaction strength is $ g_2/g_1 = 2 $; (b) quenching interaction strength is $ g_2/g_1 = 8 $, and other parameters are the same as those in the section 4.1.

    图 6  淬火强度$g_2/g_1=4$$ g_2/g_1=9 $时孤子完美劈裂 (a)淬火相互作用强度为$ g_2/g_1=4 $时在原孤子两侧各完美劈裂出1个灰孤子; (b)淬火相互作用强度为$ g_2/g_1=9 $时在原孤子两侧各完美劈裂出两个灰孤子. 可以观察到完美劈裂情况下除了孤子并没有其他激发

    Fig. 6.  When the quenching strength is $ g_2/g_1=4 $ and $ g_2/g_1=9 $, the soliton splits perfectly: (a) When the quenching interaction intensity is $ g_2/g_1=4 $, a gray soliton is perfectly split on both sides of the original soliton; (b) when the quenching interaction intensity is $ g_2/g_1 =9 $, two gray solitons are split perfectly on both sides of the original soliton. It can be seen that in the case of perfect splitting, there is no excitation except soliton.

    图 7  淬火后孤子与冲击波的振幅、速度随淬火强度的变化 (a)冲击波最高点振幅以及劈裂出的孤子深度与相互作用强度淬火比值关系, 虚线为左侧, 实线为右侧, 两者完全重合; (b) 速度与相互作用强度淬火比值关系, 红色线所描述的是冲击波, 绿色和粉丝的线是劈裂出的孤子. 在原孤子的左侧为负, 右侧为正

    Fig. 7.  Changes of amplitude and velocity of soliton and shock wave after quenching: (a) Quenching ratio relationship between the peak amplitude of shock wave, the depth of split soliton and the interaction strength. The dashed line is on the left side and the solid line is on the right side, which are completely coincident; (b) quenching ratio relationship between velocity and interaction strength. The red line describes shock wave, and the green and vermicelli lines are split solitons. It is negative on the left side and positive on the right side of the original soliton.

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [2]

    Bradley C C, Sackett C A, Tollett J J 1995 Phys. Rev. Lett. 75 1687Google Scholar

    [3]

    Davis K B, Mewes M O, Andrews M R 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [4]

    Matthews M R, Anderson B P, Haljan P C 1999 Phys. Rev. Lett. 83 2498Google Scholar

    [5]

    Burger S, Bongs K, Dettmer S 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G 2003 New J. Phys. 5 73Google Scholar

    [7]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [8]

    Hamner C, Chang J J, Engels P 2011 Phys. Rev. Lett. 106 065302Google Scholar

    [9]

    Yan D, Chang J J, Hamner C 2011 Phys. Rev. A 84 053630Google Scholar

    [10]

    Kevrekidis P G, Frantzeskakis D J 2016 Rev. Phys. 1 140Google Scholar

    [11]

    Hoefer M A, Chang J J, Hamner C 2011 Phys. Rev. A 84 041605Google Scholar

    [12]

    Yan D, Chang J J, Hamner C 2012 J. Phys. B: At. Mol. Opt. 45 115301Google Scholar

    [13]

    Danaila I, Khamehchi M A, Gokhroo V 2016 Phys. Rev. A 94 053617Google Scholar

    [14]

    Chen P J, Gurtin M E 1971 Phys. Fluids 14 1091Google Scholar

    [15]

    Serrin J 1959 Mathematical Principles of Classical Fluid Mechanics (Berlin: Springer) p125

    [16]

    Smoller J, Temple B 2003 Proc. Natl. Acad. Sci. U.S.A. 100 11216Google Scholar

    [17]

    Quintanilla R, Straughan B A 2004 Math. Phys. Sci. 460 1169Google Scholar

    [18]

    Morro A 2006 Math. Comput. Modell. 43 138Google Scholar

    [19]

    Carusotto I, Artoni M, La Rocca G C 2001 Phys. Rev. Lett. 87 064801Google Scholar

    [20]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602Google Scholar

    [21]

    Carusotto I, Hu S X, Collins L A 2006 Phys. Rev. Lett. 97 260403Google Scholar

    [22]

    Rothenberg J E, Grischkowsky D 1989 Phys. Rev. Lett. 62 531Google Scholar

    [23]

    Couton G, Maillotte H, Chauvet M 2004 J. Opt. B: Quantum Semiclassical Opt. 6 223Google Scholar

    [24]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [25]

    Jia S, Wan W, Fleischer J W 2007 Phys. Rev. Lett. 99 223901Google Scholar

    [26]

    Barsi C, Wan W, Sun C 2007 Opt. Lett. 32 2930Google Scholar

    [27]

    Ghofraniha N, Conti C, Ruocco G 2007 Phys. Rev. Lett. 99 043903Google Scholar

    [28]

    Conti C, Fratalocchi A, Peccianti M 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [29]

    Ghofraniha N, Amato L S, Folli V 2012 Opt. Lett. 37 2325Google Scholar

    [30]

    Fatome J, Finot C, Millot G 2014 Phys. Rev. X 4 021022Google Scholar

    [31]

    Dutton Z, Budde M, Slowe C 2001 Science 293 663Google Scholar

    [32]

    Simula T P, Engels P, Coddington I 2005 Phys. Rev. Lett. 94 080404Google Scholar

    [33]

    Hoefer M A, Ablowitz M J, Coddington I 2006 Phys. Rev. A 74 023623Google Scholar

    [34]

    Chang J J, Engels P, Hoefer M A 2008 Phys. Rev. Lett. 101 170404Google Scholar

    [35]

    Hoefer M A, Engels P, Chang J J 2009 Physica D 238 1311Google Scholar

    [36]

    Meppelink R, Koller S B, Vogels J M 2009 Phys. Rev. A 80 043606Google Scholar

    [37]

    Damski B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 85Google Scholar

    [38]

    Pérez-García V M, Konotop V V, Brazhnyi V A 2004 Phys. Rev. Lett. 92 220403Google Scholar

    [39]

    Kamchatnov A M, Gammal A, Kraenkel R A 2004 Phys. Rev. A 69 063605Google Scholar

    [40]

    Joseph J A, Thomas J E, Kulkarni M 2011 Phys. Rev. Lett. 106 150401Google Scholar

    [41]

    Joseph R R, Rosales-Zárate L E C, Drummond P D 2018 Phys. Rev. A 98 013638Google Scholar

    [42]

    Mo Y C, Kishek R A, Feldman D 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [43]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [44]

    Pitaevskii L P 1961 Sov. Phys. JETP 13 451

    [45]

    Gross E P 1961 Nuovo Cimento 20 454Google Scholar

    [46]

    Gross E P 1963 J. Math. Phys. 4 195Google Scholar

    [47]

    Kamchatnov A M 2019 Phys. Rev. E 99 012203Google Scholar

    [48]

    Damski B 2004 Phys. Rev. A 69 043610Google Scholar

    [49]

    Simmons S A, Bayocboc Jr F A, Pillay J C 2020 Phys. Rev. Lett. 125 180401Google Scholar

    [50]

    Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp159−162, 216−222

    [51]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [52]

    Chin C, Grimm R, Julienne P 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [53]

    Gamayun O, Bezvershenko Y V, Cheianov V 2015 Phys. Rev. A 91 031605Google Scholar

  • [1] 陈礼元, 高超, 林机, 李慧军. PT对称极化子凝聚体系统中的稳定孤子及其调控. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220475
    [2] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [3] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [5] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [6] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [7] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [8] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为. 物理学报, 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [9] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [10] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [11] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [12] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [13] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [14] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [16] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [17] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响. 物理学报, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [18] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化. 物理学报, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
    [19] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [20] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
计量
  • 文章访问数:  1086
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-20
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

玻色-爱因斯坦凝聚体中的淬火孤子与冲击波

    基金项目: 国家自然科学基金(批准号: 11835011, 12074342)和浙江省基础公益研究计划(批准号: LY21A040004)资助的课题

摘要: 系统性地探讨了通过淬火相互作用在初态包含暗孤子的玻色-爱因斯坦凝聚体中产生量子冲击波的可能性及其内禀机制. 在淬火至无相互作用极限下, 解析得到了初始静止孤子的后续动力学, 发现了冲击波的存在, 并通过量子相干效应加以解释. 在淬火至有限相互作用下, 通过数值求解Gross-Piatevskii方程也发现了冲击波现象, 并且分析了不同情形: 往弱相互作用侧淬火时得到的冲击波与无相互作用情形类似; 往强相互作用侧淬火时得到的冲击波伴随着孤子的劈裂, 且两者存在同步变化关系. 进一步探究了冲击波的特性, 包括其振幅、速度, 并得到了其随淬火相互作用强度变化的全景图谱. 这一工作为实验上实现和观测冲击波提供了理论指导.

English Abstract

    • 自1995年玻色-爱因斯坦凝聚体(Bose-Einstein condensate, BEC)在实验中实现以来, BEC为研究各种量子物理现象提供了理想平台[1-3]. 在此平台上, 人们已深入探究了诸如超流、涡旋[4]、孤子[5-13]等重要的平衡态和稳态现象, 近年来又开始探索非平衡态问题. 在经典系统中, 非平衡问题例如爆炸常伴有冲击波. 冲击波又被称为激波, 它是一种特殊的非线性现象[14]. 冲击波是属于紊流的一种传播形式, 其可观测的主要物理特征包括: 介质特性(如压力、温度或速度)在冲击波前后发生了一个像正的阶梯函数般的突然变化[15]; 其前后沿传播速度都大于局域声速; 在传播过程中冲击波的前沿速度大于后沿速度, 所以冲击波会呈现出伸展的趋势, 与孤子等非线性波不同的是, 冲击波会随距离的增加而快速耗散; 当冲击波穿过物质, 能量会守恒但熵会增加. 冲击波在耗散流体中被称为耗散冲击波, 而在色散流体中称为色散冲击波. 冲击波在许多领域被广泛地研究, 比如黑洞宇宙学的演化[16]、热波现象[17,18]、切伦科夫辐射[19]等. 不仅如此, 冲击波最近在光学介质[20-30]和超低温原子气体[31-41]研究中取得突破性实验进展而引起了人们的关注. 在足够短的时间尺度下, 甚至在强电子束下[42]和稀薄的等离子体[43]中也能观察到冲击波. 在平均场近似下, 可以用Gross-Piatevskii (GP)方程[44-46]去描述BEC量子流体动力学. 该方程所描述的系统包含色散效应, 因此其中的冲击波也被称为色散冲击波[47].

      对于各种冲击波现象, 不同情形存在的解释机制尚有讨论空间. 目前在BEC中对冲击波的产生机制有两种解释: 一是密度堆积, 含背景的高斯波包在GP方程所描述的玻色系统中演化时, 高斯波包会分裂成两个波包, 且密度高处的粒子运动得快, 所以在一段时间后密度就堆积在高处直至临界点, 随后产生冲击波[37,48]; 二是量子相干, 在无相互作用强度的稀薄气体BEC里, 含背景的高斯波包演化过程中并没有观察到密度堆积的情况, 但通过解析的演化过程发现冲击波的形成来自于背景与波包的量子相干效应[49].

    • 含背景的高斯波包在一维无相互作用的BEC中演化产生冲击波的过程, 如图1所示. 在本文的数值计算中取$ m = \hbar = g_1 = 1 $, 其中$ m $为原子质量, $ \hbar $为普朗克常数, $ g_1 $为淬火前的相互作用强度(详见(1)式后的说明), 并使用无量纲化后的参数. 其中冲击波的产生原理是量子相干效应[49], 即局部的波包与背景的相互干涉产生冲击波. 以隆起的波包为例, 波包顶部先下降, 波包的宽度逐渐变宽, 接着顶部趋于平稳并从正中间开始向下凹陷, 呈现出由1个波包变成两个波包的趋势. 同时在与背景交界处先产生下凹, 在波包分裂过程中与背景的相干效应愈加强烈, 出现不稳定, 冲击波随之产生. 不仅对于隆起的波包, 1个向下凹陷的波包同样也能与背景相干产生冲击波, 其产生过程大致相似. 根据下凹的高斯波包与暗孤子在初态时有一定的相似程度, 可以预测原本稳定于系统中的暗孤子在淬火后也可与背景相干产生冲击波.

      图  1  一维BEC中初始高斯波包的演化过程, 纵轴是密度$\rho(x, t)= {\vert\varPsi(x, t)\vert}^2$ (a)$\varPsi(x, 0)=\varPsi_0+2\exp(-x^2/\alpha^2)$; (b) $\varPsi(x, 0)=\varPsi_0-2\exp(-x^2/\alpha^2)$, 其中$\varPsi_0=3$, 高斯波包的宽度$\alpha=2$

      Figure 1.  Evolution of an initial Gaussian packet in a one-dimensional BEC. The vertical axis is density $\rho(x, t) = $$ {\vert\varPsi(x, t)\vert}^2$: (a) $\varPsi(x, 0)=\varPsi_0+2\exp(-x^2/\alpha^2)$; (b) $\varPsi(x, 0)= $$ \varPsi_0-2\exp(-x^2/\alpha^2)$. $\varPsi_0=3$ and the width of Gaussian wave packet $\alpha=2$.

    • 根据含背景波包产生冲击波的图像猜测对暗孤子淬火后也会有冲击波形成, 并对此猜想进行了数值模拟验证. 对淬火暗孤子产生冲击波的机制进行深入探究发现, 其也为背景与波包的相干效应. 为确保结果的真实性与有效性, 分别用数值与解析演化两种方法进行互相验证, 并且给出了在暗孤子淬火下相干产生冲击波的解析表达式.

      在平均场近似的情况下, 可以用一维GP方程[44-46,50]来描述一维BEC的动力学:

      $\begin{split} \;& {\rm i}\hbar\partial _t\varPsi(x,t) \\ =\;& \bigg(-\frac{\hbar^2}{2m}\partial _{xx}+V(x,t) +g\left| \varPsi(x,t)\right|^2\bigg)\varPsi(x,t), \end{split}$

      其中$ m $是原子的质量, $ g $是一维体系中有效的相互作用强度. 在实验上可以通过施加很强的横向谐振子势阱使得三维系统变为有效的一维系统. 当横向谐振子势阱的特征长度$ a_\bot $与三维的$\rm s$波原子散射长度$a_{\rm s}$不可比时, $ g = U_0/(2\pi{a^2_\bot}) $, 其中$ U_0 $为三维相互作用强度, $U_0= 4\pi{\hbar}^2 a_{\rm s}/m$. 当$ a_\bot $足够小乃至与$a_{\rm s}$可比时, 系统会发生束缚诱导共振, $ g $不再简单依赖于$ a_{\rm s} $ (详见文献[51]). 由于可以通过Feshbach共振技术用外加磁场来调节[52], $ g $可相应得到有效调控. 本文研究淬火相互作用强度带来的效应, 即将$ g $的值从$ g_1 $突然改变为$ g_2 $.

      当凝聚体囚阱在无限深势阱, 若粒子相互作用呈现排斥性状(即$ g > 0 $) 时, 存在GP方程的灰孤子解[50]:

      $ \begin{split} \varPsi = \;&\sqrt{n}\left\{{\rm i}\frac{u}{s}+\sqrt{1-\frac{u^2}{s^2}}\right.\\ &\left.\times\tanh{\left[\sqrt{1-\frac{u^2}{s^2}}\left(\frac{x-ut}{\xi}\right)\right]}\right\}{\rm e}^{-{\rm i}\mu t}, \end{split}$

      其中$ n $是背景密度; 声速$s=\sqrt{ng/m}$, 与相互作用强度以及背景密度相关联; 孤子宽度$\xi={\hbar}/{\sqrt{mgn}}$所描述的是灰孤子的尺度; $ u $是孤子速度; $ \mu $为化学势. 当孤子速度$ u $取为0时, 灰孤子变成黑孤子. 本文所淬火的孤子都是静止的暗孤子.

      将暗孤子所在的一维BEC系统中的相互作用强度参数进行淬火. 淬火至无相互作用极限时, 可以得到冲击波, 如图2所示. 通过观察数值模拟结果可以发现, 其产生冲击波过程与含背景下凹的高斯波包类似, 因此我们猜测其产生机制也是背景与暗孤子的相干作用. 与高斯波包不同之处在于, 暗孤子在产生冲击波后还可以稳定传输. 在产生冲击波过程中其宽度会发生变化, 但是在产生冲击波后, 暗孤子会依旧保持稳定.

      图  2  从$t = -10$$t= 0$, 暗孤子在凝聚体中稳定演化, 其中背景密度$n = 10$, 相互作用强度$g_1 = 1$. 而在$t = 0$时刻对系统进行了淬火, 将相互作用强度突变至$g_2= 0$, 此后在暗孤子两侧出现对称的激发, 这些激发以恒定速度向两侧运动, 中间孤子宽度变大

      Figure 2.  From $t=-10$ to $t = 0$, the dark soliton evolves stably in the condensate, in which the background density is $n=10$ and the interaction intensity $g_1=1$. At $t=0$, the system is quenched, and the interaction intensity suddenly changes to $g_2=0$. After that, symmetric excitations appear on both sides of the dark soliton, which move to both sides at a constant speed, and the width of the intermediate soliton increases.

      暗孤子初态波函数$ \varPsi(x, 0)\;{ = }\;\sqrt{n}\tanh{(\sqrt{ng}x)} $在淬火至无相互作用情况下, 随着时间在Schrödinger方程中演化, 在$t = \dfrac{m\pi}{2 ng\hbar}$时存在解析解:

      $ \begin{split} &\varPsi\left(x,\frac{m\pi}{2ng\hbar}\right) = \frac{\sqrt{n}(-\sqrt{2}{\rm e}^{A}+B+{\rm i}\sqrt{2}{\rm e}^{A}+1)}{B-1},\\ &A = \frac{4{\rm i}ng\dfrac{m^2}{\hbar^2}x^2+4\sqrt{ng\dfrac{m^2}{\hbar^2}}\pi x+{\rm i}\pi^2}{4\pi},\\ &B = \exp\left({2\sqrt{ng\frac{m^2}{\hbar^2}}x}\right). \\[-15pt]\end{split} $

      用符号函数sgn抹平暗孤子自带的背景, 则$t = \dfrac{m\pi}{2 ng\hbar}$时, 波包$ \varPsi-\sqrt{n}\rm{sgn} $在无相互作用情况下演化的表达式为

      $\begin{split} & \varPhi\left(x,\frac{m\pi}{2ng\hbar}\right) \\ =\;& \varPsi\left(x,\frac{m\pi}{2ng\hbar}\right) -\sqrt{n}{\rm{erf}}\left(\frac{\sqrt{2}}{2}\sqrt{\frac{-{\rm i}m}{\hbar t}}x\right),\end{split}$

      可以看到暗孤子的演化结果:

      $ \begin{split} & {\left|\varPsi\left(x,\frac{m\pi}{2ng\hbar}\right)\right|}^2 \\ =\;& {\varPhi\left(x,\frac{m\pi}{2\hbar}\right)}^2+{\rm{erf^2}}\left(\frac{\sqrt{2}}{2}\sqrt{\frac{-{\rm i}m}{\hbar t}}x\right)\\ &+{\varPhi\left(x,\frac{m\pi}{2ng\hbar}\right)}{\rm{erf}}\left(\frac{\sqrt{2}}{2}\sqrt{\frac{{\rm i}m}{\hbar t}}x\right)\\ &+{\varPhi^*\left(x,\frac{m\pi}{2ng\hbar}\right)}{\rm{erf}}\left(\frac{\sqrt{2}}{2}\sqrt{\frac{{\rm i}m}{\hbar t}}x\right), \end{split} $

      其中冲击波的振荡是由后三项叠加造成的. 同样, 从图3(b)可以观察到, 通过解析演化, 消除背景后冲击波不再产生. 进一步证明暗孤子淬火中冲击波的产生机制是背景与暗孤子的相干效应.

      图  3  (a)淬火后暗孤子演化至$t = \pi/20$时刻数值与解析对照图, 可以发现两者完全符合; (b) $t = \pi/20$时刻, 除去背景暗孤子淬火后的演化与不除去背景的比较, 在除去背景后冲击波消失

      Figure 3.  (a) When the dark soliton evolves to $t = \pi/20$ after quenching, it can be found that they are completely consistent with the analytical comparison chart; (b) at $t = \pi/20$, the evolution of dark soliton after quenching with background removed is compared with that without background removed, and the shock wave disappears after background removed.

    • 上文探究了在无相互作用情况($g_2/g_1= $$ 0$)下生成冲击波的机制. 在淬火比值$ 0 < g_2/g_1 < 1 $ 时, 产生冲击波的机制是否也是一样的呢? 淬火比值已不是无相互作用强度极限, 在淬火后的哈密顿量中存在着相互作用项, 即在演化方程中存在非线性项. 因此不能用解析去求解此类淬火, 只能借助于数值方法进行演化.

      选取$ g_2/g_1=0 $, $ g_2/g_1=0.1 $, $ g_2/g_1=0.9 $三个不同的淬火值进行对比. 数值演化结果如图4 所示, 可以看出, 三者形成冲击波的过程类似, 并没有出现密度堆积情况. 在产生冲击波的过程中都先在背景平面上隆起一个波包, 波包不断升高, 与此同时高起的波包与背景相互干涉, 随之产生冲击波. 比较这三者可以发现, 淬火前后比值越大其冲击波振幅越小. 特别关注$ g_2/g_1=0 $$ g_2/g_1=0.1 $的情况, 从数值模拟上看, 两者形成过程几乎没有差异, 只是在冲击波的振幅上有所差异. 由此可以推断出它们形成冲击波的机制是相同的, 即均为背景与波包的相干.

      图  4  淬火强度在$0\leqslant g_2/g_1 < 1$范围时冲击波的形成对比 (a)淬火至无相互作用强度下, 即$g_2/g_1=0$, 可以观察到在背景之上有波包的隆起, 并且伴随着与背景的振荡; (b)相互作用强度淬火前后比值$g_2/g_1 = 0.1$, 除了淬火比值不同外其他都与图(a)相同($n=10,\;g_1=1$); (c)相互作用强度淬火前后比值$g_2/g_1=0.9$, 其他参数与(a), (b)两图相同

      Figure 4.  Comparison of shock wave formation when quenching strength is $0\leqslant g_2/g_1 < 1$: (a) For quenching to the strength without interaction, that is $g_2/g_1 = 0$, it can be observed that there is a bump above the background, accompanied by oscillation with the background; (b) ratio of interaction strength before and after quenching is $g_2/g_1 = 0.1$, values of other parameters are the same as those in panel (a) ($n = 10,\; g_1 = 1,\; m = 1$, $\hbar = 1$); (c) ratio of interaction strength before and after quenching is $g_2/g_1 = 0.9$, and values of other parameters are the same as those in panels (a) and (b).

      淬火参数在$0\leqslant g_2/g_1 < 1$范围内, 冲击波的产生机制相同, 但是在冲击波的振幅与速度方面存在差异, 在后面的讨论中会再次进行分析. 当淬火比值从$ g_2/g_1=0 $变到$ g_2/g_1=0.1 $, 描述系统所用的薛定谔方程增加了非线性项. 而在考虑非线性项的情况下, 淬火暗孤子产生冲击波的机制还是背景与波包的相干, 这证明了冲击波的生成与非线性项并没有决定性的关系.

    • 在前面的讨论中已经知道, 在暗孤子淬火比值在$0\leqslant g_2/g_1 < 1$范围内会有冲击波生成, 这些都是将相互作用强度向小淬火的结果. 同样地, 作为非平衡态演化, 可以将相互作用强度向大淬火. 可以对比$ g_2/g_1 > 1 $$0\leqslant g_2/g_1 < 1$时的现象, 在此范围内所产生的激发为冲击波, 并且产生的冲击波在左右两侧是对称的.

      暗孤子在此范围内淬火时会劈裂出孤子, 并在孤子与背景的交接处产生一个隆起的波包, 随后产生冲击波, 如图5所示. 与之前情形($0\leqslant g_2/g_1 < 1$)比较可以发现, 冲击波产生过程类似, 这两种淬火情形下产生的冲击波应属于同一类型. 在区间$ 1 < g_2/g_1 $内, 冲击波的产生机制也是背景与波包的相干效应.

      图  5  淬火强度$ g_2/g_1 > 1 $时冲击波的形成对比 (a)淬火相互作用强度为$ g_2/g_1 = 2 $; (b)淬火相互作用强度为$ g_2/g_1 = 8 $, 其他参数与4.1节相同

      Figure 5.  Comparison of shock wave formation when quenching strength is $ g_2/g_1 > 1 $: (a) Quenching interaction strength is $ g_2/g_1 = 2 $; (b) quenching interaction strength is $ g_2/g_1 = 8 $, and other parameters are the same as those in the section 4.1.

      在淬火比值在$1\leqslant g_2/g_1 < 4$范围内, 分别在原孤子左右两边劈裂出1个孤子, 并伴随着冲击波, 而在$4\leqslant g_2/g_1 < 9$范围内, 除了冲击波产生, 左右两侧劈裂出孤子变为2个. 冲击波产生处都在最外侧孤子与背景相交处.

      可以发现, 在整个范围内存在着两个特殊值: $g_2/g_1= 4$$g_2/g_1 = 9$, 见图6. 当淬火至此二值时, 冲击波消失只存在孤子的劈裂, 并且淬火比值越接近这两个值时, 所产生的冲击波振幅越小. 此结果与Gamayun等[53]对BEC中的灰孤子进行淬火的探究不谋而合, 他们提出了在相互作用强度为整数的平方倍$g_2/g_1 = n^2, \;n = 2, 3, 4\cdots$时可以完美地劈裂出孤子. 所谓完美劈裂是指一个暗孤子在淬火后在原暗孤子两侧各产生一个带速度的灰孤子, 而没有伴随着其他的激发. 孤子的劈裂并非只在这些特殊的值上, 在非整数的平方倍时也可以劈裂出孤子但是会伴随着其他激发, 称为不完美劈裂.

      图  6  淬火强度$g_2/g_1=4$$ g_2/g_1=9 $时孤子完美劈裂 (a)淬火相互作用强度为$ g_2/g_1=4 $时在原孤子两侧各完美劈裂出1个灰孤子; (b)淬火相互作用强度为$ g_2/g_1=9 $时在原孤子两侧各完美劈裂出两个灰孤子. 可以观察到完美劈裂情况下除了孤子并没有其他激发

      Figure 6.  When the quenching strength is $ g_2/g_1=4 $ and $ g_2/g_1=9 $, the soliton splits perfectly: (a) When the quenching interaction intensity is $ g_2/g_1=4 $, a gray soliton is perfectly split on both sides of the original soliton; (b) when the quenching interaction intensity is $ g_2/g_1 =9 $, two gray solitons are split perfectly on both sides of the original soliton. It can be seen that in the case of perfect splitting, there is no excitation except soliton.

    • 我们发现在不同的淬火参数下冲击波的速度与振幅是不同的, 为此进行了探究. 如图7所示, 在$0\leqslant g_2/g_1 < 1$范围内冲击波振幅有剧烈的变化, $ g_2/g_1 $的比值越接近0, 冲击波的振幅越大, 比值越大振幅越小, 在$g_2/g_1 = 1$时不会有冲击波产生; 而在此范围内所产生的冲击波速度变化情况与振幅相反. 在$g_2/g_1 = 0$时速度最小, 比值越接近1, 速度越大, 当比值到达1时刻突变为0.

      图  7  淬火后孤子与冲击波的振幅、速度随淬火强度的变化 (a)冲击波最高点振幅以及劈裂出的孤子深度与相互作用强度淬火比值关系, 虚线为左侧, 实线为右侧, 两者完全重合; (b) 速度与相互作用强度淬火比值关系, 红色线所描述的是冲击波, 绿色和粉丝的线是劈裂出的孤子. 在原孤子的左侧为负, 右侧为正

      Figure 7.  Changes of amplitude and velocity of soliton and shock wave after quenching: (a) Quenching ratio relationship between the peak amplitude of shock wave, the depth of split soliton and the interaction strength. The dashed line is on the left side and the solid line is on the right side, which are completely coincident; (b) quenching ratio relationship between velocity and interaction strength. The red line describes shock wave, and the green and vermicelli lines are split solitons. It is negative on the left side and positive on the right side of the original soliton.

      淬火参数在$1\leqslant g_2/g_1\leqslant 4$范围内, 冲击波的振幅从0开始有小幅增大然后减小直至变为0, 其中有特殊比值$ g_2/g_1=4 $, 由于冲击波的消失振幅会变为0; 冲击波的速度在整个区间内都不断增大, 且与前一区间($0\leqslant g_2/g_1 < 1$) 是连续变化的. 通过速度变化的连续性亦可证明在不完美劈裂时所存在的激发是冲击波. 而在区间$4\leqslant g_2/g_1 < 9$ 内, 冲击波的振幅与前两个区间内相比更小, 变化过程与$1\leqslant g_2/g_1 < 4$相似, 先增大后减小; 冲击波速度在此范围依旧不断增大. 图7(b)中, 在忽略$ g_2/g_1 = $$ 1, \; 4,\;9 $特殊值不存在冲击波情况下(在图中已用灰色虚线抹去), 红线所描述的冲击波速度变化在所有区间内有统一的连续性.

      在之前的淬火图像中发现, 在淬火孤子两侧都有冲击波生成, 两者处于对称关系. 为验证此现象, 进行了具体的数据对比: 在图7(a)中分别用粉红色、蓝色、绿色的虚线与实线代表在孤子两侧产生的冲击波、第1次劈裂出的孤子、第2次劈裂出的孤子. 整个区间内因为淬火而产生的冲击波和孤子都是关于原孤子左右对称的. 图7(b)中实线与虚线对应的是原孤子左右两侧冲击波的速度, 其中左侧为负, 右侧为正. 在同一淬火参数下在两侧所产生的冲击波与劈裂出的孤子速度大小都相等.

      图7还可得到一些其他的信息: 冲击波的速度在任意时刻都大于局域声速, 且随着淬火参数的增加, 速度愈发接近于线性. 对于在$1 < g_2/g_1 < 4$$ 4 < g_2/g_1 < 9 $处劈裂出的孤子而言, 两对孤子都是独立存在的, 并不存在相互转变的过程, 而且后者速度要大于前者. 劈裂出的孤子速度总小于冲击波的速度, 但随着淬火比值的增大其速度变化情况与冲击波速度变化类似.

    • 本文主要探究了在玻色-爱因斯坦凝聚体中原本稳定的暗孤子在淬火后会有冲击波产生这类有趣的物理现象, 并分析了产生此现象的原因, 以及对不同情形下的淬火暗孤子进行了分析.

      首先介绍了玻色-爱因斯坦凝聚体系统中存在着孤子与冲击波, 并阐明了冲击波的一些形成机制, 发现将暗孤子进行粒子间相互作用强度淬火后可以得到冲击波, 因此对该情况下冲击波的产生机制进行了探究. 接着研究了将含有静态暗孤子的系统淬火至无相互作用的情形, 利用数值与解析两种方法说明了冲击波的形成机制为背景与波包的量子相干效应, 并且给出了两者相干的解析表达式.

      在此基础上, 发现在其他淬火参数下同样有冲击波的产生. 对此现象进行了深入的探究, 发现它们的产生机制同样来自于背景与波包的量子相干效应, 且不同的参数下冲击波的振幅、速度都有所差异. 因此做了1个关于不同淬火比值产生冲击波的全景图, 可以较为系统和完整地了解该种淬火下冲击波的变化情况. 在玻色-爱因斯坦凝聚体中还存在着许多其他非线性波, 如lump波、怪波等, 它们都是自带背景的, 因此同样可以探究在淬火后是否有冲击波产生.

参考文献 (53)

目录

    /

    返回文章
    返回