搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子对碲锌镉辐照损伤模拟研究

魏雯静 高旭东 吕亮亮 许楠楠 李公平

引用本文:
Citation:

中子对碲锌镉辐照损伤模拟研究

魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平

Simulation study of neutron radiation damage to cadmium zinc telluride

Wei Wen-Jing, Gao Xu-Dong, Lv Liang-Liang, Xu Nan-Nan, Li Gong-Ping
PDF
导出引用
  • 碲锌镉探测器长期暴露于辐射环境下时,会形成不同程度的辐照损伤,影响器件性能甚至失效,极大缩短探测器在辐射场中的服役时限 . 本文首先利用Geant4程序包对能量为1~14 MeV的中子在碲锌镉中的输运过程进行模拟,获取初级离位原子的信息,进而结合级联碰撞模型,对不同能量的中子在碲锌镉材料中造成的辐照损伤进行模拟计算 . 计算结果表明初级离位原子能量大部分位于低能端,并随着入射中子能量升高,初级离位原子的种类更加丰富,能量也逐渐增加;中子辐照碲锌镉材料时非电离能损沿着深度方向均匀分布,且非电离能损随着入射中子能量的增加呈现先增加后减小的趋势;dpa的计算结果表明dpa也随入射中子能量升高呈先增大后减小的趋势,进一步分析可知随着入射中子能量增加,非弹性散射成为造成材料内部离位损伤的主要因素.
    In recent years, the development of new semiconductor materials has brought opportunities and challenges to technological innovation and the development of emerging industries. Among them, cadmium zinc telluride material have highlighted important application prospects due to their excellent properties. CdZnTe as the third-generation cutting-edge strategic semiconductor material, has the advantages of high detection efficiency, low dark current, strong portability, and can be used at room temperature without additional cooling system. However, when the cadmium zinc telluride detector is exposed to radiation environment for a long time, it will cause different degrees of radiation damage, which will affect the performance of the device or even fail, and greatly shorten the service time of the detector in the radiation field. The transport process of 1-14 MeV neutrons in CdZnTe material was simulated to obtain the information of the primary knock-on atoms, and then combined with the cascade collision model, the irradiation of neutrons with different energies in CdZnTe material was analyzed. The damage is simulated and calculated. The calculation results show that most of the primary knock-on atoms energy is located at the low-energy end, and with the increase of the incident neutron energy, the types of primary knock-on atoms are more abundant, and the energy also increases gradually; neutron irradiation of CdZnTe The non-ionizing energy loss is uniformly distributed along the depth direction in the material, and the non-ionizing energy loss first increases and then decreases with the increase of the incident neutron energy; the calculation results of dpa show that the dpa also increases first with the increase of the incident neutron energy. And further analysis shows that the number of Te and Zn displacement atom atoms increases first and then decreases with the increase of incident neutron energy, while the number of Cd displacement atoms increases with the increase of incident neutron energy, which is co-modulated by its inelastic scattering cross-section and other nuclear-like reaction cross-sections. The comprehensive analysis shows that with the increase of the incident neutron energy, inelastic scattering becomes the main factor causing the internal displacement damage of the material.
  • [1]

    Alam M D, Nasim S S, Hasan S 2021Prog. Nucl. Energy 140 103918

    [2]

    Takahashi T, Watanabe S 2001IEEE Trans. Nucl. Sci. 48 950

    [3]

    Rao C V S, Shankara Joisa Y, Hansalia C J, Hui A K, Paul R, Ranjan P 1997Rev. Sci. Instrum. 68 1142

    [4]

    Alper B, Dillon S, Edwards A W, Gill R D, Robins R, Wilson D J 1997Rev. Sci. Instrum. 68

    [5]

    Ingesson L C, Alper B, Peterson B J, Vallet J C 2008Fusion Sci. Technol. 53 528

    [6]

    Yin Y, Li Y, Wang T, Huang C, Ye Z, Li G 2020Sensors 20 E1294

    [7]

    Johns P M, Nino J C 2019J. Appl. Phys. 126 040902

    [8]

    Gu Y, Jie W, Rong C, Wang Y, Xu L, Xu Y, Lv H, Shen H, Du G, Fu X, Guo N, Zha G, Wang T 2016Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 386 16

    [9]

    Xu L, Jie W, Zha G, Xu Y, Zhao X, Feng T, Luo L, Zhang W, Nan R, Wang T 2013CrystEngComm 15 10304

    [10]

    Bao L, Zha G, Gu Y, Jie W 2021Mater. Sci. Semicond. Process. 121 105369

    [11]

    Eisen Y, Shor A 2009IEEE Trans. Nucl. Sci. 56 1700

    [12]

    Bao L, Zha G, Xu L, Zhang B, Dong J, Li Y, Jie W 2019Mater. Sci. Semicond. Process. 100 179

    [13]

    Bartlett L M, Stahle C M, Shu P K, Barbier L M, Barthelmy S D, Gehrels N A, Krizmanic J F, Kurczynski P, Palmer D M, Parsons A M, Teegarden B J, Tueller J 1996Hard X-RayGamma-Ray Neutron Opt. Sens. Appl., 1996-07-19 pp10-16

    [14]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas J, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M G, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J P, Wenaus T, Williams D C, Wright D, Yamada T, Yoshida H, Zschiesche D 2003Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 250

    [15]

    Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone G A P, Cooperman G, Cosmo G, Cuttone G, Daquino G, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia M G, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch J P, Williams D C, Wright D, Yoshida H 2006IEEE Trans. Nucl. Sci. 53 270

    [16]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal Ph, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835 186

    [17]

    Srour J R, Marshall C J, Marshall P W 2003IEEE Trans. Nucl. Sci. 50 653

    [18]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2001Radiat. Phys. Chem. 62 301

    [19]

    Liu Y, Zhu T, Yao J, Ouyang X 2019Sensors 19 1767

    [20]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018J. Nucl. Mater. 512 450

    [21]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018Nat. Commun. 9 1084

    [22]

    Robinson M, Torrens I 1974Phys. Rev. B 9 5008

    [23]

    Bryant F J, Webster E 1967Phys. Status Solidi B 21 315

    [24]

    Guo R, Xu Y, Wang T, Zha G, Jie W 2020J. Appl. Phys. 127 024501

  • [1] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, doi: 10.7498/aps.71.20211722
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, doi: 10.7498/aps.69.20200714
    [3] 南瑞华, 王朋飞, 坚增运, 李晓娟. CdZnTe像素探测器的电输运性能. 物理学报, doi: 10.7498/aps.66.206101
    [4] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, doi: 10.7498/aps.66.026101
    [5] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, doi: 10.7498/aps.66.057104
    [6] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, doi: 10.7498/aps.65.108801
    [7] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, doi: 10.7498/aps.64.108802
    [8] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, doi: 10.7498/aps.64.194208
    [9] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, doi: 10.7498/aps.63.047202
    [10] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, doi: 10.7498/aps.62.166801
    [11] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, doi: 10.7498/aps.62.156105
    [12] 孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛. 基于1/f 噪声变化的pn结二极管辐射效应退化机理研究. 物理学报, doi: 10.7498/aps.61.127808
    [13] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, doi: 10.7498/aps.61.046103
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.106601
    [15] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, doi: 10.7498/aps.60.098110
    [16] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, doi: 10.7498/aps.59.4818
    [17] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, doi: 10.7498/aps.58.8657
    [18] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, doi: 10.7498/aps.57.3703
    [19] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, doi: 10.7498/aps.57.6494
    [20] 李养贤, 刘何燕, 牛萍娟, 刘彩池, 徐岳生, 杨德仁, 阙端鳞. 中子辐照直拉硅中的本征吸除效应. 物理学报, doi: 10.7498/aps.51.2407
计量
  • 文章访问数:  158
  • PDF下载量:  14
  • 被引次数: 0
出版历程

中子对碲锌镉辐照损伤模拟研究

  • 兰州大学核科学与技术学院, 兰州 730000

摘要: 碲锌镉探测器长期暴露于辐射环境下时,会形成不同程度的辐照损伤,影响器件性能甚至失效,极大缩短探测器在辐射场中的服役时限 . 本文首先利用Geant4程序包对能量为1~14 MeV的中子在碲锌镉中的输运过程进行模拟,获取初级离位原子的信息,进而结合级联碰撞模型,对不同能量的中子在碲锌镉材料中造成的辐照损伤进行模拟计算 . 计算结果表明初级离位原子能量大部分位于低能端,并随着入射中子能量升高,初级离位原子的种类更加丰富,能量也逐渐增加;中子辐照碲锌镉材料时非电离能损沿着深度方向均匀分布,且非电离能损随着入射中子能量的增加呈现先增加后减小的趋势;dpa的计算结果表明dpa也随入射中子能量升高呈先增大后减小的趋势,进一步分析可知随着入射中子能量增加,非弹性散射成为造成材料内部离位损伤的主要因素.

English Abstract

目录

    /

    返回文章
    返回