-
Microwave wireless power transfer(MWPT) can break through the restriction of transmission line to transmit electrical energy, which is conducive to dealing with power supply in complex scenarios, and has a very large application prospect. Energy conversion efficiency is an important parameter of MWPT. Hence, researchers are focus on improving the conversion efficiency of MWPT from different ways. Schottky diode is the core component of the rectifier circuit, which determines the limit of the energy conversion efficiency. However, the research involving the design of Schottky diode has rarely reported. In this paper, a GeOI folded space charge region Schottky diode is proposed. The space charge region of the proposed Schottky diode is composed of two parts: the vertical space charge region and the horizontal space charge region. So the capacitor is also divided into two parts, namely the vertical capacitor and the lateral capacitor. In the device model, these two capacitors are in series. So the total capacitance will be reduced. This article establishes its capacitance model and completes the optimization of device material parameters and structure parameters. The designed device parameters are as follows: the doping concentration of the heavily doped buffer layer on the left side of the Ge material is 2 × 1020 cm–3 to form Ohm contact, the doping concentration of the lightly doped region on the right side is 3.8 × 1017 cm–3, the thickness of the folded region is 0.2 μm, the Schottky metal is Wu, the width of metal is 8 μm, and the length of metal is 2 μm. We use the proposed Schottky diode as the core rectifier to simulate the rectifier circuit by using ADS, in which the SPICE parameters of the proposed Schottky diode was extract using Cadence Model Editor. When the input energy is 24.5 dBm, the energy conversion efficiency reached 75.4%. Compared with the conventional schottky diode, the energy conversion efficiency is significantly improved. The study of the proposed Schottky diodes can provide valuable reference for improving the energy conversion efficiency of microwave wireless energy transmission.
-
Keywords:
- microwave wireless power transmission /
- GeOI /
- Schottky diode /
- conversion efficiency
[1] Brandao G L F, Resende U C, Bicalho F S, Almeida G A T, Afonso M M 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Lodz, Poland, September 14–16, 2017 pp1–2
[2] Bicalho F S, ResendeÚ C, BrandãoG L F, Almeida G A T 2017 IEEE 3rd Global Electromagnetic Compatibility Conference (GEMCCON) Sao Paulo, Brazil, November 8–10, 2017 pp1–5
[3] Huang K, Lau V K N 2014 IEEE Trans. Wireless Commun. 13 902
[4] Brown W C, Eves E E 1992 IEEE Trans Microwave Theory Tech. 40 1239
[5] KhangST, LeeD J, Hwang I J, YeoT D, Yu J W 2018 IEEE Antennas Wirel. Propag. Lett. 17 155Google Scholar
[6] Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans Microwave Theory Tech. 66 2433Google Scholar
[7] Guo J, Zhang H X, Zhu X N 2014 IEEE Trans Microwave Thery 62 977
[8] Aldrigo M, Dragoman M, Modreanu M, Povey I, Iordanescu S, Vasilache D, Dinescu A, Shanawani M, Masotti D 2018 IEEE Trans Electron Devices 65 2973Google Scholar
[9] Palazzi V, DelPrete M, Fantuzzi M 2017 IEEE Microwave Mag. 18 91
[10] Almoneef T S, Erkmen F, Alotaibi M A, Ramahi O M 2018 IEEE Trans Antennas Propag. 66 1714Google Scholar
[11] Chen Y S, Chiu C W 2018 Int. J RF Microwave Comput. Aided Eng. 28 212Google Scholar
[12] Mohan K Y N, Duraiswamy P 2016 Asia-Pacific Microwave Conference (APMC) New Delhi, India, December 5–9, 2016 pp1–4
[13] Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538
[14] Brown W C 1974 Proc. IEEE 62 11Google Scholar
[15] Brown W C 1984 IEEE TransMicrowave Theory Tech. 32 1230Google Scholar
[16] Yang Y, Li L, Li J, Liu Y L, Zhang B, Zhu H C, Huang K M 2018 IEEE Antennas Wirel. Propag. Lett. 17 684Google Scholar
[17] Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans Antennas Propag. 63 3486Google Scholar
[18] 樊国丽, 江月松, 刘丽, 黎芳 2010 物理学报 59 5374Google Scholar
Fan G L, Jang Y S, Liu L 2010 Acta Phys. Sin. 59 5374Google Scholar
[19] 徐小波, 张鹤鸣, 胡辉勇 2011 物理学报 60 118501Google Scholar
Xu X B, Zhang H M, Hu H Y 2011 Acta Phys. Sin. 60 118501Google Scholar
[20] Jeon W, Melngailis J, Newcomb R W 2006 Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06) Kuala Lumpur, Malaysia, January 17–19, 2006 pp1–6
[21] 舒斌, 戴显英, 张鹤鸣 2004 物理学报 53 235Google Scholar
Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 235Google Scholar
[22] 肖文波, 刘伟庆, 吴华明, 张华明 2018 物理学报 67 198801Google Scholar
Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar
-
表 1 HSMS-2820肖特基二极管SPICE参数表
Table 1. The SPICE parameters of HSMS-2820.
参数 单位 HSMS2820 参数 单位 HSMS2820 $ {B}_{\mathrm{v}} $ V 15 $ {C}_{\mathrm{j}0} $ pF 0.7 $ {E}_{\mathrm{G}} $ eV 0.69 $ {I}_{\mathrm{B}\mathrm{V}} $ A 1 × 10-4 $ {I}_{\mathrm{S}} $ A 2.2 × 10-8 N 1.08 $ {R}_{\mathrm{S}} $ $\Omega $ 6.0 $ {P}_{\mathrm{B}} $ V 0.65 $ {P}_{\mathrm{T}} $ 2 M 0.5 表 2 全耗尽GeOI折叠空间电荷区肖特基二极管SPICE参数表
Table 2. The SPICE parameters of C-V curve of fully depleted GeOI folded space charge region SBD.
参数 单位 全耗尽GeOI折叠空间电荷区肖特基二极管 $ {B}_{\mathrm{v}} $ V 18 $ {C}_{\mathrm{j}0} $ pF 0.3 $ {E}_{\mathrm{G}} $ eV 0.69 $ {I}_{\mathrm{B}\mathrm{V}} $ A 3 × 10-5 $ {I}_{\mathrm{S}} $ A 1.12 × 10-10 N 1.08 $ {R}_{\mathrm{S}} $ $\Omega $ 6.0 $ {P}_{\mathrm{B}} $ V 0.2 $ {P}_{\mathrm{T}} $ 2 M 0.5 -
[1] Brandao G L F, Resende U C, Bicalho F S, Almeida G A T, Afonso M M 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Lodz, Poland, September 14–16, 2017 pp1–2
[2] Bicalho F S, ResendeÚ C, BrandãoG L F, Almeida G A T 2017 IEEE 3rd Global Electromagnetic Compatibility Conference (GEMCCON) Sao Paulo, Brazil, November 8–10, 2017 pp1–5
[3] Huang K, Lau V K N 2014 IEEE Trans. Wireless Commun. 13 902
[4] Brown W C, Eves E E 1992 IEEE Trans Microwave Theory Tech. 40 1239
[5] KhangST, LeeD J, Hwang I J, YeoT D, Yu J W 2018 IEEE Antennas Wirel. Propag. Lett. 17 155Google Scholar
[6] Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans Microwave Theory Tech. 66 2433Google Scholar
[7] Guo J, Zhang H X, Zhu X N 2014 IEEE Trans Microwave Thery 62 977
[8] Aldrigo M, Dragoman M, Modreanu M, Povey I, Iordanescu S, Vasilache D, Dinescu A, Shanawani M, Masotti D 2018 IEEE Trans Electron Devices 65 2973Google Scholar
[9] Palazzi V, DelPrete M, Fantuzzi M 2017 IEEE Microwave Mag. 18 91
[10] Almoneef T S, Erkmen F, Alotaibi M A, Ramahi O M 2018 IEEE Trans Antennas Propag. 66 1714Google Scholar
[11] Chen Y S, Chiu C W 2018 Int. J RF Microwave Comput. Aided Eng. 28 212Google Scholar
[12] Mohan K Y N, Duraiswamy P 2016 Asia-Pacific Microwave Conference (APMC) New Delhi, India, December 5–9, 2016 pp1–4
[13] Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538
[14] Brown W C 1974 Proc. IEEE 62 11Google Scholar
[15] Brown W C 1984 IEEE TransMicrowave Theory Tech. 32 1230Google Scholar
[16] Yang Y, Li L, Li J, Liu Y L, Zhang B, Zhu H C, Huang K M 2018 IEEE Antennas Wirel. Propag. Lett. 17 684Google Scholar
[17] Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans Antennas Propag. 63 3486Google Scholar
[18] 樊国丽, 江月松, 刘丽, 黎芳 2010 物理学报 59 5374Google Scholar
Fan G L, Jang Y S, Liu L 2010 Acta Phys. Sin. 59 5374Google Scholar
[19] 徐小波, 张鹤鸣, 胡辉勇 2011 物理学报 60 118501Google Scholar
Xu X B, Zhang H M, Hu H Y 2011 Acta Phys. Sin. 60 118501Google Scholar
[20] Jeon W, Melngailis J, Newcomb R W 2006 Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06) Kuala Lumpur, Malaysia, January 17–19, 2006 pp1–6
[21] 舒斌, 戴显英, 张鹤鸣 2004 物理学报 53 235Google Scholar
Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 235Google Scholar
[22] 肖文波, 刘伟庆, 吴华明, 张华明 2018 物理学报 67 198801Google Scholar
Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar
计量
- 文章访问数: 10483
- PDF下载量: 113
- 被引次数: 0