搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔材料的低温刻蚀技术

张权治 张雷宇 马方方 王友年

引用本文:
Citation:

多孔材料的低温刻蚀技术

张权治, 张雷宇, 马方方, 王友年

Cryogenic etching of porous material

Zhang Quan-Zhi, Zhang Lei-Yu, Ma Fang-Fang, Wang You-Nian
PDF
HTML
导出引用
  • 随着半导体芯片特征尺寸的持续减小, 低介电常数的多孔材料在微电子领域得到广泛应用. 然而, 多孔材料在等离子体刻蚀工艺中面对严峻的挑战. 等离子体中的活性自由基很容易在多孔材料内部扩散, 并与材料发生不可逆的化学反应, 在材料内部造成大面积损伤. 本文介绍了业内比较前沿的低温刻蚀技术, 通过降低基片台的温度, 使得刻蚀产物或者刻蚀前驱气体在多孔材料内部凝结成液态或者固态, 进而在等离子体刻蚀过程中, 阻止活性自由基在材料内部的扩散, 保护多孔材料免受损伤. 刻蚀完毕后, 再通过升高基片台的温度, 使凝结物挥发, 得到完整无损的刻蚀结构. 这一刻蚀技术只需要控制基片台的温度, 无需增加工艺的复杂度以及调整等离子体状态, 在半导体工艺中具有较好的应用前景.
    With the shrinkage of chip feature sizes, porous materials are widely used in microelectronics. However, they are facing severe challenges in plasma etching, as the reactive radicals can diffuse into the interior of material and damage the material, which is called plasma induced damage. In this paper, we review two kinds of etching processes based on low chuck temperature, i.e. cryogenic etching. By lowering the chuck temperature, either the etching by-products or the precursor gas can condense in the porous material, and thus preventing the radicals from diffusing and protect the material from being damaged by plasma. The technology of cryogenic filling inside the porous material is simple but effective, which allows it to have a good application prospect.
      通信作者: 王友年, ynwang@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11675036, 11935005)和大连理工大学启动经费(批准号: DUT19RC(3)045)资助的课题
      Corresponding author: Wang You-Nian, ynwang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675036, 11935005) and the Scientific Research Foundation from Dalian University of Technology, China (Grant No. DUT19RC(3)045)
    [1]

    Sicard E, Boyer A 2019 EMC Compo Haining, China, October 21–23, 2019 ffhal-02403882

    [2]

    Iwai H 2007 Second International Conference on Industrial and Information Systems, Sri Lanka, August 8−11, 2007 p571

    [3]

    王婷婷, 叶超, 宁兆元, 程珊华 2005 物理学报 54 892Google Scholar

    Wang T T, Ye C, Ning Z Y, Cheng S H 2005 Acta Phys. Sin. 54 892Google Scholar

    [4]

    Zhang L, Marneffe J F, Heyne M, Naumov S, Sun Y T, et al. 2015 ECS J. Solid State Sci. Technol. 4 N3098Google Scholar

    [5]

    Baklanov M, Marneffe J F, Shamiryan D, Urbanowicz A, Shi H, Rakhimova T, Huang H, Ho P 2013 J. Appl. Phys. 113 041101Google Scholar

    [6]

    Lionti K, Volksen W, Magbitang T, Darnon M, Dubois G 2015 ECS J. Solid State Sci. Technol. 4 N3071Google Scholar

    [7]

    Frot T, Volksen W, Purushothaman S, Bruce R, Dubois G 2011 Adv. Mater. 23 2828Google Scholar

    [8]

    Frot T, Volksen W, Purushothaman S, Bruce R L, Magbitang T, Miller D C, Deline V R, Dubois G 2012 Adv. Funct. Mater. 22 3043Google Scholar

    [9]

    Tachi S, Tsujimoto K, Okudaira S 1988 Appl. Phys. Lett. 52 616Google Scholar

    [10]

    Tachi S, Tsujimoto K, Arai S, Kure T 1991 J. Vac. Sci. Technol., A 9 796Google Scholar

    [11]

    Tsujimoto K, Okudaira S, Tachi S 1991 Jpn. J. Appl. Phys. 30 3319Google Scholar

    [12]

    Zhang L, Ljazouli R, Lefaucheux P, Tillocher T, Dussart R, Mankelevich Y A, de Marneffe J F, de Gendt S, Baklanov M R 2013 ECS Solid State Lett. 2 N5Google Scholar

    [13]

    Zhang L, Ljazouli R, Lefaucheux P, Tillocher T, Dussart R, Mankelevich Y A, de Marneffe J F, de Gendt S, Baklanov M R 2013 ECS J. Solid State Sci. Technol. 2 N131Google Scholar

    [14]

    Zhang L, de Marneffe J F, Leroy F, Lefaucheux P, Tillocher T, Dussart R, Maekawa K, Yatsuda K, Dussarrat C, Goodyear A, Cooke M, De Gendt S, Baklanov M R 2016 J. Phys. D: Appl. Phys. 49 175203Google Scholar

    [15]

    Dussart R, Tillocher T, Lefaucheux P, Boufnichel M 2014 J. Phys. D: Appl. Phys. 47 123001Google Scholar

    [16]

    Chanson R, Zhang L, Naumov S, Mankelevich Yu A, Tillocher T, Lefaucheux P, Dussart R, De Gendt S, De Marneffe J F 2018 Sci. Rep. 8 1886Google Scholar

    [17]

    Chanson R, Tahara S, Vanstreels K, de Marneffe J F 2018 Plasma Research Express 1 015006Google Scholar

    [18]

    Chanson R, Dussart R, Tillocher T, Lefaucheux P, Dussarrat C, De Marneffe J F 2019 Front. Chem. Sci. Eng. 13 511Google Scholar

    [19]

    Rezvanov A, Miakonkikh A, Vishnevskiy A, Rudenko K, Baklanov M 2017 J. Vac. Sci. Technol. B 35 021204Google Scholar

    [20]

    Kushner M 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [21]

    Sankaran A, Kushner M J 2004 Vac. Sci. Technol., A 22 1242

    [22]

    胡艳婷, 张钰如, 宋远红, 王友年 2018 物理学报 67 225203Google Scholar

    Hu Y T, Zhang Y R, Song Y H, Wang Y N 2018 Acta Phys. Sin. 67 225203Google Scholar

    [23]

    蒋相占, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204Google Scholar

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204Google Scholar

    [24]

    Zhang Q Z, Tink S, De Marneffe J F, Zhang L P, Bogaerts A 2017 Appl. Phys. Lett. 111 173104Google Scholar

    [25]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

  • 图 1  (a)等离子体损伤示意图; (b)无等离子体损伤和(c)等离子体损伤后的low-k多孔材料化学结构[6]

    Fig. 1.  (a) Schematic of plasma induced damage; chemical structure of low-k porous materials (b) before plasma damage and (c) same structure after plasma damage[6].

    图 2  多孔材料无损伤刻蚀技术: P4, 极低温刻蚀, 低温刻蚀(利用刻蚀前驱气体凝结作用)[14]

    Fig. 2.  Damage free etching of porous low-k material: Post porosity plasma protection (P4), cryogenic etch and low temperature etch using precursor condensation[14].

    图 3  OSG-2.0材料刻蚀前后的FTIR谱线 (a)无偏压刻蚀; (b)有偏压刻蚀[13]

    Fig. 3.  FTIR spectra of OSG-2.0 material (before and after plasma etching): (a) Without bias; (b) with bias[13].

    图 4  OSG-2.0材料在不同基片温度下的刻蚀率[13]

    Fig. 4.  Etching rate of OSG-2.0 material at different chuck temperature[13].

    图 5  等离子体刻蚀后OSG-2.0材料的介电常数k值 (a)纯SF6等离子体刻蚀; (b) SiF4/O2/SF6等离子体[13]

    Fig. 5.  k value of OSG-2.0 material (before and after plasma etching): (a) Pure SF6 plasma etching; (b) SiF4/O2/SF6 plasma etching[13].

    图 6  不同基片温度下, 多孔材料在CF3Br等离子体中的刻蚀率和材料折射率[19]

    Fig. 6.  Etching rate and refractive rate of porous material after CF3Br plasma etching at various chuck temperature[19].

    图 7  在不同温度下, CF3Br等离子体刻蚀多孔材料的FTIR谱线 (a)加热处理前; (b)加热处理后[19]

    Fig. 7.  FTIR spectra of porous material after CF3Br plasma etching: (a) Before annealing; (b)after annealing[19].

    图 8  不同基片温度下, 多孔材料在CF4等离子体中的刻蚀率和材料折射率[19]

    Fig. 8.  Etching rate and refractive rate of porous material after CF4 plasma etching at various chuck temperature[19].

    图 9  多孔材料内部分别充入SF6和C4H8气体后, 在不同温度下的折射率(反应气体的凝结比例, 1 Torr = 1.33322×102 Pa)[14]

    Fig. 9.  Change of refractive index as a function of temperature, showing the condensation of pure SF6 or C4H8 into a porous low-k SBA-2.2[14].

    图 10  C4F8/SF6等离子体刻蚀多孔材料 (a)折射率; (b)刻蚀率; (c)介电常数k[14]

    Fig. 10.  Plasma etch results with mixture of C4F8/SF6 at different chuck temperature: (a) Refractive index; (b) etching rate; (c) k value[14].

    图 11  多孔材料内部分别充入HBPO, SF6和C4F8气体后, 在不同温度下的折射率(反应气体的凝结比例)[16]

    Fig. 11.  Refractive index of porous material at various chuck temperature in HBPO, SF6 and C4F8 gas[16].

    图 12  不同温度下, HBPO等离子体刻蚀多孔材料后的介电常数[16]

    Fig. 12.  k value of porous material after HBPO plasma etching at various chuck temperature[16].

    图 13  多种工艺气体在不同温度下, 对多孔材料刻蚀过程中的刻蚀率和介电常数k[18]

    Fig. 13.  Etching rate and k value of porous material for different gas discharge as a function of chuck temperature[18].

    图 14  计算得到的不同温度下的刻蚀轮廓 (a) –50 ℃; (b) –95 ℃; (c) –104 ℃; (d) –110 ℃; (e) –115 ℃; (f) –120 ℃[24]

    Fig. 14.  Etching profiles at various chuck temperature: (a) –50 ℃; (b) –95 ℃; (c) –104 ℃; (d) –110 ℃; (e) –115 ℃; (f) –120 ℃[24].

    图 15  不同基片温度(–50, –104, –120 ℃)下3个时刻(t1, t2, t3)的刻蚀轮廓[24]

    Fig. 15.  Evolution of etching profiles at various chuck temperature (–50, –104, –120 ℃)[24].

    图 16  SF6/C4F8等离子体刻蚀多孔材料的截面结构 (a) –50 ℃刻蚀后结构; (b) –50 ℃刻蚀后浸到dHF酸溶液30 s; (c) –110 ℃刻蚀后结构; (d) –110 ℃刻蚀后浸到dHF酸溶液30 s[24]

    Fig. 16.  Cross-sectional images of narrow spacing trench profiles: (a) –50 ℃, after plasma etching; (b) –50 ℃, after plasma etching and 0.5% dHF dip 30 s; (c) –110 ℃, after plasma etching; (d) –110 ℃, after plasma etching and 0.5% dHF dip 30 s [24].

    图 17  低温刻蚀–50 ℃时, (a) F密度分布, (b) C2F4自由基分布, (c)离子能量分布; 低温刻蚀–120 ℃时, (d) F密度分布, (e) C2F4自由基分布, (f)离子能量分布[24]

    Fig. 17.  Calculated (a) and (d) F atom density (in cm–3), (b) and (e) C2F4 molecule density (in cm–3), and (c) and (f) normalized ion energy and angular distributions, at –50 ℃ (a)–(c) and –120 ℃ (d)–(f)[24]

    表 1  等离子体材料损伤检测手段[6]

    Table 1.  Characterization methods of plasma induced damage[6].

    优点缺点
    傅里叶变换红外光谱通过吸收峰变化, 可表征材料化学结构变化对操作环境较敏感, 要避免材料二次污染的影响
    光谱椭偏仪测量通过反射率变化, 可间接推测介电常数等变化需要额外数据处理
    dHF酸浸泡法操作简单, 易观测损伤使用化学试剂, 腐蚀损伤材料
    下载: 导出CSV
  • [1]

    Sicard E, Boyer A 2019 EMC Compo Haining, China, October 21–23, 2019 ffhal-02403882

    [2]

    Iwai H 2007 Second International Conference on Industrial and Information Systems, Sri Lanka, August 8−11, 2007 p571

    [3]

    王婷婷, 叶超, 宁兆元, 程珊华 2005 物理学报 54 892Google Scholar

    Wang T T, Ye C, Ning Z Y, Cheng S H 2005 Acta Phys. Sin. 54 892Google Scholar

    [4]

    Zhang L, Marneffe J F, Heyne M, Naumov S, Sun Y T, et al. 2015 ECS J. Solid State Sci. Technol. 4 N3098Google Scholar

    [5]

    Baklanov M, Marneffe J F, Shamiryan D, Urbanowicz A, Shi H, Rakhimova T, Huang H, Ho P 2013 J. Appl. Phys. 113 041101Google Scholar

    [6]

    Lionti K, Volksen W, Magbitang T, Darnon M, Dubois G 2015 ECS J. Solid State Sci. Technol. 4 N3071Google Scholar

    [7]

    Frot T, Volksen W, Purushothaman S, Bruce R, Dubois G 2011 Adv. Mater. 23 2828Google Scholar

    [8]

    Frot T, Volksen W, Purushothaman S, Bruce R L, Magbitang T, Miller D C, Deline V R, Dubois G 2012 Adv. Funct. Mater. 22 3043Google Scholar

    [9]

    Tachi S, Tsujimoto K, Okudaira S 1988 Appl. Phys. Lett. 52 616Google Scholar

    [10]

    Tachi S, Tsujimoto K, Arai S, Kure T 1991 J. Vac. Sci. Technol., A 9 796Google Scholar

    [11]

    Tsujimoto K, Okudaira S, Tachi S 1991 Jpn. J. Appl. Phys. 30 3319Google Scholar

    [12]

    Zhang L, Ljazouli R, Lefaucheux P, Tillocher T, Dussart R, Mankelevich Y A, de Marneffe J F, de Gendt S, Baklanov M R 2013 ECS Solid State Lett. 2 N5Google Scholar

    [13]

    Zhang L, Ljazouli R, Lefaucheux P, Tillocher T, Dussart R, Mankelevich Y A, de Marneffe J F, de Gendt S, Baklanov M R 2013 ECS J. Solid State Sci. Technol. 2 N131Google Scholar

    [14]

    Zhang L, de Marneffe J F, Leroy F, Lefaucheux P, Tillocher T, Dussart R, Maekawa K, Yatsuda K, Dussarrat C, Goodyear A, Cooke M, De Gendt S, Baklanov M R 2016 J. Phys. D: Appl. Phys. 49 175203Google Scholar

    [15]

    Dussart R, Tillocher T, Lefaucheux P, Boufnichel M 2014 J. Phys. D: Appl. Phys. 47 123001Google Scholar

    [16]

    Chanson R, Zhang L, Naumov S, Mankelevich Yu A, Tillocher T, Lefaucheux P, Dussart R, De Gendt S, De Marneffe J F 2018 Sci. Rep. 8 1886Google Scholar

    [17]

    Chanson R, Tahara S, Vanstreels K, de Marneffe J F 2018 Plasma Research Express 1 015006Google Scholar

    [18]

    Chanson R, Dussart R, Tillocher T, Lefaucheux P, Dussarrat C, De Marneffe J F 2019 Front. Chem. Sci. Eng. 13 511Google Scholar

    [19]

    Rezvanov A, Miakonkikh A, Vishnevskiy A, Rudenko K, Baklanov M 2017 J. Vac. Sci. Technol. B 35 021204Google Scholar

    [20]

    Kushner M 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [21]

    Sankaran A, Kushner M J 2004 Vac. Sci. Technol., A 22 1242

    [22]

    胡艳婷, 张钰如, 宋远红, 王友年 2018 物理学报 67 225203Google Scholar

    Hu Y T, Zhang Y R, Song Y H, Wang Y N 2018 Acta Phys. Sin. 67 225203Google Scholar

    [23]

    蒋相占, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204Google Scholar

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204Google Scholar

    [24]

    Zhang Q Z, Tink S, De Marneffe J F, Zhang L P, Bogaerts A 2017 Appl. Phys. Lett. 111 173104Google Scholar

    [25]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

  • [1] 陈钇成, 张成龙, 张丽超, 祁志美. 光栅耦合的InSb基THz-SPP共振传感方法研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231904
    [2] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231598
    [3] 陈俊祥, 于继东, 耿华运, 贺红亮. 多孔材料的温度和压强计算. 物理学报, 2017, 66(5): 056401. doi: 10.7498/aps.66.056401
    [4] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [5] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [6] 杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开. 虹彩环形结构色氧化铝薄膜的制备与研究. 物理学报, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [7] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [8] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [9] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [10] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [11] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究. 物理学报, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [12] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [13] 刘培生. 多孔材料在压缩载荷作用下的剪切破坏模式分析. 物理学报, 2010, 59(7): 4849-4856. doi: 10.7498/aps.59.4849
    [14] 刘培生. 多孔材料在压缩载荷作用下的屈曲失效模式分析. 物理学报, 2010, 59(12): 8801-8806. doi: 10.7498/aps.59.8801
    [15] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [16] 朱希睿, 孟续军, 田明锋, 姜旻昊. 中低温等离子体原子能量的分波法计算. 物理学报, 2007, 56(4): 2053-2060. doi: 10.7498/aps.56.2053
    [17] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [18] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [19] 伍乃娟, 谢侃, 胡建芳, 洪明苑, 李会楠. 在低温等离子体及低能离子作用下PET表面氮的XPS研究. 物理学报, 1988, 37(3): 373-378. doi: 10.7498/aps.37.373
    [20] 李家全. 磁阱中的低温等离子体. 物理学报, 1980, 29(11): 1471-1478. doi: 10.7498/aps.29.1471
计量
  • 文章访问数:  6224
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-02-20
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回