搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应

张辉 曾德长

引用本文:
Citation:

Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应

张辉, 曾德长

The inverse magnetostrictive effect in Tb0.3Dy0.7Fe2

Zhang Hui, Zeng De-Chang
PDF
导出引用
  • 研究了Terfenol-D材料中巨磁致伸缩的逆效应,即磁机械效应.基于Stoner-Wohlfarth(SW)模型,考虑磁晶各向异性和应力各向异性能,依据自由能极小原理,获得了退磁态下Terfenol-D单晶中磁化强度方向和压应力的关系.采用数值方法求解了平衡条件下的非线性方程组.理论结果表明,Terfenol-D巨磁致伸缩单晶中的磁各向异性取决于磁晶各向异性和应力各向异性之间的竞争.在压应力的作用下,Terfenol-D单晶中的磁各向异性由立方向单轴转变.理论和实验结果的比较表明,存在一个临界压应力,使磁致伸缩效应达到极大值.该理论结果还解释了压应力使得Terfenol-D单晶材料难于磁化和磁致伸缩效应出现极大值的实验事实.理论计算不仅为研究这类问题提供了一个更准确的方法,而且其结果也有助于理解类似材料中的磁化过程.
    The inverse magnetostrictive effect, also called magnetomechanical effect, in Terfenol-D material, has been investigated in this paper. Based on Stoner-Wohlfarth (SW) model, taking into account magnetocrystalline and stress-induced anisotropy energy, and following the free energy minimization procedure, direction cosines of magnetization in Terfenol-D single crystal in demagnetized state have been obtained as a function of the compressive stress. The nonlinear equations for equilibrium have been solved numerically. The results indicated that under compressive stress, magnetic anisotropy in Terfenol-D is determined by a competition between magnetocrystalline and stress-induced anisotropy energy, and changes from cubic symmetry to uniaxial. A comparison between experimental and numerical results showed that there is a maximum magnetostriction in Terfenol-D at a certain stress. According to our numerical results, experimental observations that compressive stress makes Terfenol-D hard to be magnetized and leads to the maximum magnetostriction can be explained. The computation in this paper presents a more accurate approach to similar investigations, and its numerical results would be helpful for a better understanding of magnetization process of similar materials.
    • 基金项目: 国家自然科学基金(批准号:U0734001, 50874050)资助的课题.
    [1]

    [1]Clark A E, Spano M L, Savage H T 1983 IEEE Trans. Magn. MAG-19 1964

    [2]

    [2]Zhao X, Wu G, Wang J, Jia K, Zhan W 1996 J. Appl. Phys. 79 6225

    [3]

    [3]Wun-Fogle M, Restorff J B, Leung K, Cullen J R 1999 IEEE Trans. Magn. 35 3817

    [4]

    [4]Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [5]

    [5]Teter J P, Wun-Fogle M, Clark A E, Mahoney K 1990 J. Appl. Phys. 67 5004

    [6]

    [6]Jiles D C, Hariharan S 1990 J. Appl. Phys. 67 5013

    [7]

    [7]Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    [8]Clark A E, Savage H T, Spano M L 1984 IEEE Trans. Magn. MAG-20 1443

    [9]

    [9]Jiles D C, Thoelke J B 1991 IEEE Trans. Magn. 27 5352

    [10]

    ]Jiles D C, Thoelke J B 1994 J. Magn. Magn. Mater. 134 143

    [11]

    ]Zhao X G, Lord D G 1999 J. Magn. Magn. Mater. 195 699

    [12]

    ]Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [13]

    ]Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [14]

    ]Stoner E C, Wohlfarth E P 1948 Philos. Trans. Roy. Soc. London A 240 599

    [15]

    ]Néel L 1944 J. Phys. Radium 5 241

    [16]

    ]Lawton H, Stewart K H 1948 Proc. Roy. Soc. A 193 72

    [17]

    ]Stoner E C 1950 Rep. Prog. Phys. 13 83

    [18]

    ]Birss R R, Hegarty B C 1966 Brit. J. Appl. Phys. 17 1241

    [19]

    ]Nocedal J, Wright S J 2006 Numerical Optimization (New York: Springer) p270

    [20]

    ]von Engel A, Wills M S 1947 Proc. Roy. Soc. A 188 464

    [21]

    ]Clark A E, Teter J P, Mcmasters O D 1988 J. Appl. Phys. 63 3910

  • [1]

    [1]Clark A E, Spano M L, Savage H T 1983 IEEE Trans. Magn. MAG-19 1964

    [2]

    [2]Zhao X, Wu G, Wang J, Jia K, Zhan W 1996 J. Appl. Phys. 79 6225

    [3]

    [3]Wun-Fogle M, Restorff J B, Leung K, Cullen J R 1999 IEEE Trans. Magn. 35 3817

    [4]

    [4]Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [5]

    [5]Teter J P, Wun-Fogle M, Clark A E, Mahoney K 1990 J. Appl. Phys. 67 5004

    [6]

    [6]Jiles D C, Hariharan S 1990 J. Appl. Phys. 67 5013

    [7]

    [7]Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    [8]Clark A E, Savage H T, Spano M L 1984 IEEE Trans. Magn. MAG-20 1443

    [9]

    [9]Jiles D C, Thoelke J B 1991 IEEE Trans. Magn. 27 5352

    [10]

    ]Jiles D C, Thoelke J B 1994 J. Magn. Magn. Mater. 134 143

    [11]

    ]Zhao X G, Lord D G 1999 J. Magn. Magn. Mater. 195 699

    [12]

    ]Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [13]

    ]Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [14]

    ]Stoner E C, Wohlfarth E P 1948 Philos. Trans. Roy. Soc. London A 240 599

    [15]

    ]Néel L 1944 J. Phys. Radium 5 241

    [16]

    ]Lawton H, Stewart K H 1948 Proc. Roy. Soc. A 193 72

    [17]

    ]Stoner E C 1950 Rep. Prog. Phys. 13 83

    [18]

    ]Birss R R, Hegarty B C 1966 Brit. J. Appl. Phys. 17 1241

    [19]

    ]Nocedal J, Wright S J 2006 Numerical Optimization (New York: Springer) p270

    [20]

    ]von Engel A, Wills M S 1947 Proc. Roy. Soc. A 188 464

    [21]

    ]Clark A E, Teter J P, Mcmasters O D 1988 J. Appl. Phys. 63 3910

  • [1] 柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞. 正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜. 物理学报, 2024, 73(22): 1-11. doi: 10.7498/aps.73.20240701
    [2] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [3] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质. 物理学报, 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [7] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [8] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [9] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [10] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [11] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [12] 姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜. N+注入修复外延Fe膜面内六重磁对称. 物理学报, 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [13] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [14] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [15] 李立毅, 严柏平, 张成明, 曹继伟. Tb0.3Dy0.7Fe2合金磁畴偏转研究. 物理学报, 2012, 61(16): 167506. doi: 10.7498/aps.61.167506
    [16] 张辉, 曾德长, 刘仲武. 压应力对Fe0.81 Ga0.19单晶磁化和磁致伸缩的影响. 物理学报, 2011, 60(6): 067503. doi: 10.7498/aps.60.067503
    [17] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性. 物理学报, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [18] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [19] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [20] 何正明, 赵妙余, 张玲芬, 汪晓光. 铁基非晶合金磁致伸缩的温度效应. 物理学报, 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
计量
  • 文章访问数:  8924
  • PDF下载量:  898
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-22
  • 修回日期:  2009-07-15
  • 刊出日期:  2010-02-05

/

返回文章
返回