搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征

张坤 刘芳洋 赖延清 李轶 颜畅 张治安 李劼 刘业翔

引用本文:
Citation:

太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征

张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔

In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells

Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang
PDF
导出引用
  • 通过直流反应磁控溅射技术,原位生长制备了太阳电池用Cu2ZnSnS4(CZTS)薄膜.采用X射线能量色散谱仪、扫描电镜、X射线衍射仪、紫外可见分光光度计和霍尔效应测试系统对薄膜进行了表征.结果表明,原位生长的CZTS薄膜具有均质、致密和平整的形貌,且由贯穿整个薄膜厚度的柱状颗粒组成.不同基底温度下生长所得薄膜的Cu/(Zn+Sn) 值均约为1,而Zn/Sn值均大于1且随着基底温度升高而减小.所得薄膜在(112)方向上择优取向明显,且结构特征受基底温度和Cu/(Zn+Sn)的共同影响.所得薄膜均具有高达104cm-1的光吸收系数,其带隙宽度随着生长温度的增加而降低,并且在500℃时为(1.51±0.01)eV.薄膜的导电类型均为p型,且具有与器件级Cu(In,Ga)Se2(CIGS)相当的载流子浓度.
    Cu2ZnSnS4 (CZTS) thin films have been first in situ grown by reactive magnetron co-sputtering and its characterizations has been carried out by energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), scan electron microscope(SEM), optical transmittance and electronic measurement. It was observed that the grown film shows homogeneous, compact surface morphology, and consists of large columnar grains throughout the thickness. The atom ratio Cu/(Zn+Sn) is about 1, while Zn/Sn is larger than 1 and decreases with the increase of substrate temperature. XRD analysis indicates that the grown film exhibits strong preferential orientation along (112) plane and the structural properties depend on growth temperature and Cu/(Zn+Sn) ratio. The in situ grown CZTS film has an optical absorption coefficient higher than 104 cm-1, and the optical band gap becomes narrow with the increase of substrate temperature and achieves (1.51±0.01)eV at 500℃. The conduction type of the CZTS films is p-type and the value of carrier concentration is comparable with values of device quality CIGS.
    • 基金项目: 湖南省自然科学基金重点项目(批准号: 09JJ3110)资助的课题.
    [1]

    Hnes K, Zscherpel E, Scragg J, Siebentritt S 2009 Physica B: Condensed Matter 404 4949

    [2]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [3]

    Steinhagen G, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554

    [4]

    Seol G, Lee Y S, Lee J C, Nam H D, Ki H K 2003 Sol. Energy Mater. Sol. Cells 75 155

    [5]

    Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Eng. R 40 1

    [6]

    Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Li J, Liu Y X 2010 Acta Phys. Sin. 59 1198 (in Chinese) [赖延清、 匡三双、 刘芳洋、 张志安、 刘 军、 李 劼、 刘业翔 2010 物理学报 59 1198]

    [7]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [8]

    Teodor K T, Kathleen B R, David B M 2010 Adv. Mater. 22 1

    [9]

    Weber A, Krauth H, Perlt S, Schubert B, Ktschau I, Schorr S, Schock H W 2009 Thin Solid Films 517 2524

    [10]

    Friedlmeier T M, Wieser N, Walter T, Dittrich H, Schock H W 1997 Proceedings of the 14th European PVSEC and Exhibition Barcelona, July 4—30, 1997 P4B. 10

    [11]

    Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H 2006 Phys. Status Solidi C 3 2844

    [12]

    Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W, Araki H, Oishi K, Katagiri H 2007 Thin Solid Films 515 5997

    [13]

    Xie D T, Zhao K, Wang L F, Zhu F, Quan S W, Meng T J, Zhang B C, Chen J E 2002 Acta Phys. Sin. 51 1377 (in Chinese) [谢大弢、 赵 夔、 王莉芳、 朱 凤、 全胜文、 孟铁军、 张保澄、 陈佳洱 2002 物理学报 51 1377]

    [14]

    Kobayashi T, Jimbo K, Tsuchida K, Shinoda S, Oyanagi T, Katagiri H 2005 Jpn. J. Appl. Phys. 44 783

    [15]

    Sekiguchi K, Tanaka K, Moriya K, Uchiki H 2006 Phys. Status Solidi C 3 2618

    [16]

    Moriya K, Watabe J, Tanaka K, Uchiki H 2006 Phys. Status Solidi C 3 2848

    [17]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230

    [18]

    Tanaka K, Moritake N, Uchiki H 2007 Sol. Energy Mater. Sol. Cells 91 1199

    [19]

    Zhang X, Shi X Z, Ye W C, Ma C L, Wang C M 2009 Appl. Phys. A 94 381

    [20]

    Li A, Ao J P, He Q, Liu F F, Li F Y, Li C J, Sun Y 2007 Acta Phys. Sin. 56 5009 (in Chinese)[李 微、 敖建平、 何 青、 刘芳芳、 李凤岩、 李长健、 孙 云 2007 物理学报 56 5009]

    [21]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [22]

    Liu X P, Shao L X 2007 Surf. Coat. Technol. 201 5340

    [23]

    Unold T, Sieber I, Ellmer K 2006 Appl. Phys. Lett. 88 213502

    [24]

    Katagiri H 2005 Thin Solid Films 480—481 426

    [25]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [26]

    Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978

    [27]

    Guo Q J, Hillhouse H W, Agrawal R 2009 J. An. Chem. Soc. 131 11672

    [28]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211

    [29]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [30]

    Guillén C, Herrero J 1994 J. Electrochem. Soc. 141 225

    [31]

    Jean F, Guillemoles O, Pierre C, Alain L, Kamel F, Frederic B, Jacques V, Daniel L 1996 J. Appl. Phys. 9 79

    [32]

    Nadenau V, Braunger D, Hariskos D, Kaiser M, Kble C, Oberacker A, Ruck M, Rühle U, Schffler R, Schmid D, Walter T, Zweigart S, Schock H W 1995 Prog. Photovolt. 3 363

    [33]

    Tuttle J R, Albin D S, Goral J P, Noufi R 1990 21th IEEE Photovoltaic Specialists Conference Kissimmee, May 21—25, 1990 p748

    [34]

    Ingrid R, Miguel A C, Brian E, Clay D, John S, Craig L P, Bobby T, Rommel N 2008 Prog. Photovolt: Res. Appl. 16 235

    [35]

    Pawar S M, Moholkar A V, Suryavanshi U B, Rajpure K Y, Bhosale C H 2007 Sol. Energy Mater. Sol. Cells 91 560

    [36]

    Stratieva N, Tzvetkova E, Ganchev M, Kochev K, Tomov I 1997 Sol. Energy Mater. Sol. Cells 45 87

    [37]

    Fiederling R, Keim R, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787

    [38]

    Rincón C, Hernández E, Wasim S M, Molina I 1998 Phys. Chem. Solids 59 1015

    [39]

    Müller J, Nowoczin J, Schmitt H 2006 Thin Solid Films 496 364

    [40]

    Lincot D, Meier H G, Kessler J, Vedel J, Dimmler B, Schock H W 1990 Sol. Energy Mater. 20 67

    [41]

    Guillen C, Herrero J, Lincot D 1994 J. Appl. Phys. 76 359

    [42]

    Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481

    [43]

    Zhang J, Shao L X 2009 Sci. China Ser. E 52 269

    [44]

    Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T 1997 Sol. Energy Mater. Sol. Cells 49 407

    [45]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Phys. Status Solidi A 206 1525

    [46]

    Nakayama N, Ito K 1996 Appl. Surf. Sci. 92 171

  • [1]

    Hnes K, Zscherpel E, Scragg J, Siebentritt S 2009 Physica B: Condensed Matter 404 4949

    [2]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [3]

    Steinhagen G, Panthani M G, Akhavan V, Goodfellow B, Koo B, Korgel B A 2009 J. Am. Chem. Soc. 131 12554

    [4]

    Seol G, Lee Y S, Lee J C, Nam H D, Ki H K 2003 Sol. Energy Mater. Sol. Cells 75 155

    [5]

    Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Eng. R 40 1

    [6]

    Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Li J, Liu Y X 2010 Acta Phys. Sin. 59 1198 (in Chinese) [赖延清、 匡三双、 刘芳洋、 张志安、 刘 军、 李 劼、 刘业翔 2010 物理学报 59 1198]

    [7]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [8]

    Teodor K T, Kathleen B R, David B M 2010 Adv. Mater. 22 1

    [9]

    Weber A, Krauth H, Perlt S, Schubert B, Ktschau I, Schorr S, Schock H W 2009 Thin Solid Films 517 2524

    [10]

    Friedlmeier T M, Wieser N, Walter T, Dittrich H, Schock H W 1997 Proceedings of the 14th European PVSEC and Exhibition Barcelona, July 4—30, 1997 P4B. 10

    [11]

    Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H 2006 Phys. Status Solidi C 3 2844

    [12]

    Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W, Araki H, Oishi K, Katagiri H 2007 Thin Solid Films 515 5997

    [13]

    Xie D T, Zhao K, Wang L F, Zhu F, Quan S W, Meng T J, Zhang B C, Chen J E 2002 Acta Phys. Sin. 51 1377 (in Chinese) [谢大弢、 赵 夔、 王莉芳、 朱 凤、 全胜文、 孟铁军、 张保澄、 陈佳洱 2002 物理学报 51 1377]

    [14]

    Kobayashi T, Jimbo K, Tsuchida K, Shinoda S, Oyanagi T, Katagiri H 2005 Jpn. J. Appl. Phys. 44 783

    [15]

    Sekiguchi K, Tanaka K, Moriya K, Uchiki H 2006 Phys. Status Solidi C 3 2618

    [16]

    Moriya K, Watabe J, Tanaka K, Uchiki H 2006 Phys. Status Solidi C 3 2848

    [17]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230

    [18]

    Tanaka K, Moritake N, Uchiki H 2007 Sol. Energy Mater. Sol. Cells 91 1199

    [19]

    Zhang X, Shi X Z, Ye W C, Ma C L, Wang C M 2009 Appl. Phys. A 94 381

    [20]

    Li A, Ao J P, He Q, Liu F F, Li F Y, Li C J, Sun Y 2007 Acta Phys. Sin. 56 5009 (in Chinese)[李 微、 敖建平、 何 青、 刘芳芳、 李凤岩、 李长健、 孙 云 2007 物理学报 56 5009]

    [21]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [22]

    Liu X P, Shao L X 2007 Surf. Coat. Technol. 201 5340

    [23]

    Unold T, Sieber I, Ellmer K 2006 Appl. Phys. Lett. 88 213502

    [24]

    Katagiri H 2005 Thin Solid Films 480—481 426

    [25]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [26]

    Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978

    [27]

    Guo Q J, Hillhouse H W, Agrawal R 2009 J. An. Chem. Soc. 131 11672

    [28]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211

    [29]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [30]

    Guillén C, Herrero J 1994 J. Electrochem. Soc. 141 225

    [31]

    Jean F, Guillemoles O, Pierre C, Alain L, Kamel F, Frederic B, Jacques V, Daniel L 1996 J. Appl. Phys. 9 79

    [32]

    Nadenau V, Braunger D, Hariskos D, Kaiser M, Kble C, Oberacker A, Ruck M, Rühle U, Schffler R, Schmid D, Walter T, Zweigart S, Schock H W 1995 Prog. Photovolt. 3 363

    [33]

    Tuttle J R, Albin D S, Goral J P, Noufi R 1990 21th IEEE Photovoltaic Specialists Conference Kissimmee, May 21—25, 1990 p748

    [34]

    Ingrid R, Miguel A C, Brian E, Clay D, John S, Craig L P, Bobby T, Rommel N 2008 Prog. Photovolt: Res. Appl. 16 235

    [35]

    Pawar S M, Moholkar A V, Suryavanshi U B, Rajpure K Y, Bhosale C H 2007 Sol. Energy Mater. Sol. Cells 91 560

    [36]

    Stratieva N, Tzvetkova E, Ganchev M, Kochev K, Tomov I 1997 Sol. Energy Mater. Sol. Cells 45 87

    [37]

    Fiederling R, Keim R, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787

    [38]

    Rincón C, Hernández E, Wasim S M, Molina I 1998 Phys. Chem. Solids 59 1015

    [39]

    Müller J, Nowoczin J, Schmitt H 2006 Thin Solid Films 496 364

    [40]

    Lincot D, Meier H G, Kessler J, Vedel J, Dimmler B, Schock H W 1990 Sol. Energy Mater. 20 67

    [41]

    Guillen C, Herrero J, Lincot D 1994 J. Appl. Phys. 76 359

    [42]

    Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481

    [43]

    Zhang J, Shao L X 2009 Sci. China Ser. E 52 269

    [44]

    Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T 1997 Sol. Energy Mater. Sol. Cells 49 407

    [45]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Phys. Status Solidi A 206 1525

    [46]

    Nakayama N, Ito K 1996 Appl. Surf. Sci. 92 171

  • [1] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [4] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [5] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [7] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [8] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [9] 李志国, 刘玮, 何静婧, 李祖亮, 韩安军, 张超, 周志强, 张毅, 孙云. Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响. 物理学报, 2013, 62(3): 038803. doi: 10.7498/aps.62.038803
    [10] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [11] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [12] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [13] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [14] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析. 物理学报, 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [16] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [17] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [18] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  8059
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-22
  • 修回日期:  2010-05-05
  • 刊出日期:  2011-01-05

/

返回文章
返回