搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究

陈超 江向平 卫巍 李小红 魏红斌 宋福生

引用本文:
Citation:

(K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究

陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生

Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal

Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng
PDF
导出引用
  • 采用高温熔融法制备出了尺寸达5 mm3 mm1 mm的(K0.45Na0.55)NbO3(KNN)无铅铁电晶体. XRD测试结果表明KNN晶体结构为纯的钙钛矿正交相结构,晶体的显露面为〈001〉结晶面. SEM显微结构分析表明晶体沿[001]方向呈现层状生长台阶,采用负离子配位多面体生长基元模型解释了晶体层状台阶的生长机理. 研究了晶体样品在室温至500 ℃温度范围内的介电性能,两个介电异常峰出现在240和405 ℃,分别对应正交铁电-四方铁电以及四方铁电-立方顺电相相变温度. 采用修正后的居里外斯定律研究了KNN晶体的介电弛豫特性,结果表明KNN晶体的介电弛豫特性接近于普通铁电体特征.
    Lead-free piezoelectric 〈001〉-oriented KNN crystals each with a dimension of 5 mm3 mm1 mm are obtained by melt grown technique. The room temperature crystal structure of orthorhombic perovskite-type lattice is determined from XRD measurment. The SEM observation reveals the growth steps aligning approximately along the [001] direction. Base on the model of negative ion coordination polyhedrons, it is explained that the layer growth mechanism is dominant for the 〈001〉 face. Two phase transition temperatures of orthorhombic-to-tetragonal (O-to-T) and tetragonal-to-cubic (T-to-C) are around 240 ℃ and 405 ℃ for KNN crystals according to the dielectric measurements, respectively. A linear fitting of the modified Curie-Weiss law to experimental data shows that the normal ferroelectric property is dominant for KNN crystal.
    • 基金项目: 国家自然科学基金(批准号: 50862005, 51062005, 91022027)、江西省高等学校先进陶瓷材料科技创新团队、江西省主要学科学术和技术带头人培养对象计划(批准号: 2010DD00800)和江西省教育厅项目(批准号: GJJ11196)资助的课题.
    [1]

    Fu H, Cohen R E 2000 Nature 403 281

    [2]
    [3]

    Cheng Z Y, Yao X, Zhang L Y 1996 Acta Phys. Sin. 45 1026(in Chinese)[程忠阳、 姚 熹、 张良莹 1996 物理学报 45 1026]

    [4]
    [5]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [6]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 209

    [7]
    [8]
    [9]

    Haertling G H 1967 J. Am. Ceram. Soc. 50 329

    [10]

    Chen K, Xu G S, Yang D F, Wang X F, Li J B 2007 J. Appl. Phys. 101 044103

    [11]
    [12]

    Inagaki Y, Kakimoto K, Kagomiya I 2010 J. European. Ceramic. Soc 30 301

    [13]
    [14]
    [15]

    Lin D B, Li Z R, Zhuo X, Yao X 2009 Ferroelectrics 381 1

    [16]
    [17]

    Ming B Q, Wang J F, Zang G Z, Wang C M, Gai Z G, Du J, Zheng L M 2008 Acta Phys. Sin. 57 5962 (in Chinese) [明保全、 王矜奉、 臧国忠、 王春明、 盖志刚、杜 鹃、 郑立梅 2008 物理学报 57 5962]

    [18]

    Xia H R, Li L X, Wang J Y, Liu Y G, Wei J Q 2000 Cryst. Res. Technol. 35 1209

    [19]
    [20]
    [21]

    Wang J Y, Li L X, Guan Q C, Wei J Q, Liu Y G 1993 Appl. Laser 13 193 (in Chinese) [王继扬、 李丽霞、 管庆才、 魏景谦、 刘耀岗 1993 应用激光 13 193]

    [22]

    Inagaki Y, Kakimoto K, Kagomiya I 2009 Jpn. J. Appl. Phys. 48 09KC09-1

    [23]
    [24]

    Zhou W P, Wan S M, Zhang Q L, Yin S T, You J L, Wang Y Y 2010 Acta Phys. Sin. 59 5085 (in Chinese) [周文平、 万松明、 张庆礼、 殷绍唐、 尤静林、 王媛媛 2010 物理学报 59 5085]

    [25]
    [26]
    [27]

    Kugel G E, Mesli H, Fontana M D 1988 Phys. Rev. B 37 5619

    [28]

    Zhong W Z, Hua S K 1999 Morphology of Crystal Growth (Beijing: Science Press) p208 (in Chinese)[钟维卓、 华素坤 1999 晶体生长形态学(北京: 科学出版社) 第208 页]

    [29]
    [30]

    Fang B J, Xu H Q, He T H, Luo H S, Yin Z W 2002 J. Crystal Growth 244 318

    [31]
    [32]

    Dong M, Ye Z G 2000 J. Crystal Growth 209 81

    [33]
    [34]
    [35]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905

  • [1]

    Fu H, Cohen R E 2000 Nature 403 281

    [2]
    [3]

    Cheng Z Y, Yao X, Zhang L Y 1996 Acta Phys. Sin. 45 1026(in Chinese)[程忠阳、 姚 熹、 张良莹 1996 物理学报 45 1026]

    [4]
    [5]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [6]

    Jaeger R E, Egerton L 1962 J. Am. Ceram. Soc. 45 209

    [7]
    [8]
    [9]

    Haertling G H 1967 J. Am. Ceram. Soc. 50 329

    [10]

    Chen K, Xu G S, Yang D F, Wang X F, Li J B 2007 J. Appl. Phys. 101 044103

    [11]
    [12]

    Inagaki Y, Kakimoto K, Kagomiya I 2010 J. European. Ceramic. Soc 30 301

    [13]
    [14]
    [15]

    Lin D B, Li Z R, Zhuo X, Yao X 2009 Ferroelectrics 381 1

    [16]
    [17]

    Ming B Q, Wang J F, Zang G Z, Wang C M, Gai Z G, Du J, Zheng L M 2008 Acta Phys. Sin. 57 5962 (in Chinese) [明保全、 王矜奉、 臧国忠、 王春明、 盖志刚、杜 鹃、 郑立梅 2008 物理学报 57 5962]

    [18]

    Xia H R, Li L X, Wang J Y, Liu Y G, Wei J Q 2000 Cryst. Res. Technol. 35 1209

    [19]
    [20]
    [21]

    Wang J Y, Li L X, Guan Q C, Wei J Q, Liu Y G 1993 Appl. Laser 13 193 (in Chinese) [王继扬、 李丽霞、 管庆才、 魏景谦、 刘耀岗 1993 应用激光 13 193]

    [22]

    Inagaki Y, Kakimoto K, Kagomiya I 2009 Jpn. J. Appl. Phys. 48 09KC09-1

    [23]
    [24]

    Zhou W P, Wan S M, Zhang Q L, Yin S T, You J L, Wang Y Y 2010 Acta Phys. Sin. 59 5085 (in Chinese) [周文平、 万松明、 张庆礼、 殷绍唐、 尤静林、 王媛媛 2010 物理学报 59 5085]

    [25]
    [26]
    [27]

    Kugel G E, Mesli H, Fontana M D 1988 Phys. Rev. B 37 5619

    [28]

    Zhong W Z, Hua S K 1999 Morphology of Crystal Growth (Beijing: Science Press) p208 (in Chinese)[钟维卓、 华素坤 1999 晶体生长形态学(北京: 科学出版社) 第208 页]

    [29]
    [30]

    Fang B J, Xu H Q, He T H, Luo H S, Yin Z W 2002 J. Crystal Growth 244 318

    [31]
    [32]

    Dong M, Ye Z G 2000 J. Crystal Growth 209 81

    [33]
    [34]
    [35]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905

计量
  • 文章访问数:  8535
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-20
  • 修回日期:  2011-01-27
  • 刊出日期:  2011-05-05

/

返回文章
返回