搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆垛层错和温度对纳米多晶镁变形机理的影响

宋海洋 李玉龙

引用本文:
Citation:

堆垛层错和温度对纳米多晶镁变形机理的影响

宋海洋, 李玉龙

The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg

Song Hai-Yang, Li Yu-Longi
PDF
导出引用
  • 本文采用分子动力学模拟方法研究了在拉伸载荷下, 堆垛层错和温度对纳米多晶镁力学性能的影响. 在模拟中, 采用嵌入原子势描述镁原子之间的相互作用. 计算结果表明: 在纳米晶粒中引入堆垛层错能明显增强纳米多晶镁的屈服应力, 但堆垛层错对纳米多晶镁杨氏模量的影响很小; 温度为300.0 K时, 孪晶在晶粒交界附近形成, 孪晶随着拉伸应变的增加而逐渐生长. 当拉伸应变达到0.087时, 一种基面与X-Y面成大约35 角且内部包含堆垛层错的新晶粒成核并快速增长. 也就是说, 孪晶和新晶粒的形成和繁殖是含堆垛层错的纳米多晶镁在300.0 K温度下的主要变形机理. 模拟结果也显示, 当温度为10.0 K时, 位错的成核和滑移是含堆垛层错的纳米多晶镁拉伸变形的主要形式.
    The effects of stacking fault (SF) and temperature on the mechanical properties of nano-polycrystal Mg under tension loading are investigated by molecular dynamics simulations. The interatomic potential of embedded atom method (EAM) is used as the Mg-Mg interaction. The computational results show that the yield strength of nano-polycrystal Mg can be obviously enhanced when stacking fault is introduced into grains, and the effect of SF on the Young's modulus of nano-polycrystal Mg is very small. The results also show that tensile twins and new grain at 300.0 K are nucleated and initiated at grain boundaries, growing continuously with the increase of strain. The dihedral angel between the (1000) plane of new grain and the X-Y plane is about 35. In other words, the nucleation and the growth of twins and new grains are the predominant deformation mechanism for nano-polycrystal Mg at 300.0K. We also find that at 10.0K the dislocation nucleation and slip are the predominant modes of the plastic deformation for nano-polycrystal Mg.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10932008)、国家自然科学基金青年项目(批准号: 10902083)和陕西省青年科技新星计划项目(批准号: 2012KJXX-39) 资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10932008), the National Natural Science Foundation of China (Grant No. 10902083), and the Program for New Scientific and Technological Star of Shaanxi Province (Grant No.2012KJXX-39).
    [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511

    [3]

    Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 物理学报 51 2308]

    [4]

    Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508

    [5]

    Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 物理学报 58 1849]

    [6]

    Qu S X, Zhou H F 2010 Nanotechnology 21 335704

    [7]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [8]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [9]

    Qu S X, Zhou H F 2011 Scripta Mater. 65 265

    [10]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142

    [11]

    Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693

    [12]

    Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742

    [13]

    Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411

    [14]

    Li B, Ma E 2009 Acta. Mater. 57 1734

    [15]

    Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370

    [16]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [17]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [18]

    Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1

    [19]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069

    [21]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [22]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [23]

    Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847

  • [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511

    [3]

    Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 物理学报 51 2308]

    [4]

    Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508

    [5]

    Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 物理学报 58 1849]

    [6]

    Qu S X, Zhou H F 2010 Nanotechnology 21 335704

    [7]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [8]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [9]

    Qu S X, Zhou H F 2011 Scripta Mater. 65 265

    [10]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comput. Mater. Sci. 46 142

    [11]

    Han J, Su X M, Jin Z H 2011 Scripta Mater. 64 693

    [12]

    Tang T, Kim S, Horstemeyer M F 2010 Acta. Mater. 58 4742

    [13]

    Kim D H, Ebrahimi F, Manuel M V 2011 Mater. Sci. Eng. A 528 5411

    [14]

    Li B, Ma E 2009 Acta. Mater. 57 1734

    [15]

    Guo Y F, Wang Y S, Qi H G 2010Acta Metall. Sin. 23 370

    [16]

    Song H Y, Li Y L 2012 Phys. Lett. A 376 529

    [17]

    Song H Y, Li Y L 2012 J. Appl. Phys. 111 044322

    [18]

    Zhu Y T, Liao X Z, Wu X L 2012 Prog. Mater. Sci. 57 1

    [19]

    Liu X Y, Adams J B, Ercolessi F, Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069

    [21]

    Faken D, Jonsson H 1994 Compos. Mater. Sci. 2 279

    [22]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [23]

    Froseth A G, VanSwygenhoven H, Derlet P M 2005 Acta. Mater. 53 4847

计量
  • 文章访问数:  6151
  • PDF下载量:  1749
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-21
  • 修回日期:  2012-06-19
  • 刊出日期:  2012-11-05

/

返回文章
返回