搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温退火磷吸杂工艺对低少子寿命铸造多晶硅电性能的影响

姜丽丽 路忠林 张凤鸣 鲁雄

引用本文:
Citation:

低温退火磷吸杂工艺对低少子寿命铸造多晶硅电性能的影响

姜丽丽, 路忠林, 张凤鸣, 鲁雄

Effects of low-temperature annealing phosphorous gettering process on the electrical properties of multi-crystalline silicon with a low minority carrier lifetime

Jiang Li-Li, Lu Zhong-Lin, Zhang Feng-Ming, Lu Xiong
PDF
导出引用
  • 本文针对低少子寿命铸造多晶硅片进行试验, 通过一种将多温度梯度磷扩散吸杂工艺与低温退火工艺结合的新型低温退火吸杂工艺, 去除低少子寿命多晶硅片中影响其电性能的Fe杂质及部分晶体缺陷, 提高低少子寿命多晶硅所生产的太阳电池各项电性能. 通过低温退火磷扩散吸杂工艺与其他磷扩散吸杂工艺的比较, 证明了低温退火吸杂工艺具有更好的磷吸杂和修复晶体缺陷的作用. IV-measurement发现经过低温退火工艺处理后的低少子寿命多晶硅, 制备的太阳电池光电转换效率比其他实验组高0.2%, 表明该工艺能有效地提高低少子寿命多晶硅太阳电池各项电性能参数及电池质量. 本研究结果表明新型低温退火磷吸杂工艺可将低少子寿命硅片应用于大规模太阳电池生产中, 提高铸造多晶硅材料在太阳能领域的利用率, 节约铸造多晶硅的生产成本.
    A new low-temperature annealing phosphorous gettering process (LTAPGP) was developed to improve the electrical properties of multi-crystalline silicon which has a low minority carrier lifetime. LTAPGP combined a multi-plateau temperature phosphorous gettering process and a low-temperature annealing process. LTAPGP can remove the iron impurities and crystallographic defects of multi-crystalline silicon, and improve the electrical properties of silicon solar cells that were produced from low minority carrier lifetime silicon wafers. Compared with multi-plateau and two-plateau temperature phosphorous gettering process, LTAPGP was more effective in gettering iron impurities and repairing crystallographic defects. The multi-crystalline silicon wafers with a low minority carrier lifetime went through an LTAPGP process were utilized to produce solar cells. The IV-measurement data prove that the efficiency of the new solar cells is 0.2% higher than that of specimens subject to the multi-plateau and two-plateau temperature processes. The results indicat that LTAPGP can make the low minority carrier lifetime silicon wafers to be used in solar cell industry, improve the utilization ratio and reduce the production cost of cast polysilicon.
    [1]

    Deng H, Yang D R, Tan J, Xi Z Q, Que D L 2007 Acta Energi. 28 2 (in Chinese) [邓海, 杨德仁, 唐骏, 席珍强, 阙端麟 2005 太阳能学报 28 2]

    [2]

    Shi X B, Xu Z Q, Shi Z R, Zhu T, Wang Y 2006 Journal of Sothern Yangtze University (Natural Science Edition) 5(6) (in Chinese) [石湘波, 许志强, 施正荣, 朱拓 2006 江南大学学报 5 6]

    [3]
    [4]
    [5]

    Min J, Li J H 1995 Research Progress of SSE 15 3 (in Chinese) [闵靖, 陈一, 宗祥福 1995 固体电子学研究与进展 15 3]

    [6]
    [7]

    Ji X B, Zhou Q G, Liu B, Xu J 2009 Chinese J. Rare Metals 32 6 (in Chinese) [籍小兵, 周旗钢, 刘 斌, 徐继平 2009 稀有金属 32 6]

    [8]

    Seidel T, Meek R, Cullis A 1975 J. Appl. Phys. 46 2

    [9]
    [10]
    [11]

    Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K 2008 Prog Photovoltaics 16 2

    [12]
    [13]

    Shabani M B, Yamashita T, Morita E. 2008 Solid State Phenom 131

    [14]

    Prichaud I 2002 Sol. Energ. Mat. Sol. C 72 1

    [15]
    [16]

    Khedher N, Hajji M, Hassen M, Ben Jaballah A, Ouertani B, Ezzaouia H, Bessais B, Selmi A, Bennaceur R 2005 Sol. Energ. Mat. Sol. C 87 1

    [17]
    [18]
    [19]

    Chen J X, Xi Z Q, Wu D D, Yang D R 2007 Acta Energi 28 2

    [20]

    Pletzer T, Stegemann E, Windgassen H, Suckow S, Btzner D, Kurz H. 2011 Prog Photovoltaics 19 8

    [21]
    [22]

    Shockley W 1952 Proceedings of the IRE 40 11

    [23]
    [24]
    [25]

    Hall R N 1952 Physical Review 87 2

    [26]
    [27]

    Krain R, Herlufsen S, Schmidt J 2008 Appl. Phys. Lett. 93

    [28]

    Geranzani P, Pagani M, Pello C, Borionetti G 2002 Internal gettering in silicon: experimental and theoretical studies based on fast and slow diffusing metals Scitec Publications; 1999 p381-386

    [29]
    [30]
    [31]

    Istratov A A, Vinl H, Huber W, Weber E R 2005 Semiconductor Science and Tech 20

    [32]

    Istratov A A, Hieslmair H, Weber E 1999 Appl. Phys. A-Mater 69 1

    [33]
    [34]
    [35]

    Istratov A A, Hieslmair H, Weber E 2000 Appl. Phys. A-Mater 70 5

    [36]

    Komatsu Y, Galbiati G, Lamers M, Venema P, Harris M, Stassen A F, Meyer C, van den Donker M, Weeber A 2009 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany., 2009, 1063-1067

    [37]
    [38]

    Komatsu Y, Koorn M, Vlooswijk A H G, Venema P R, Stassen A F 2011 Energy Procedia 8

    [39]
    [40]

    Manshanden P, Geerligs L 2006 Sol. Energ. Mat. Sol. C 90 7

    [41]
    [42]
    [43]

    Nelson J 2003 The physics of solar cells Vol.57 2003: World Scientific.

    [44]
    [45]

    Green M A 1982 Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p1

    [46]

    Jha A Solar cell technology and applications 2009: Auerbach Publications

    [47]
  • [1]

    Deng H, Yang D R, Tan J, Xi Z Q, Que D L 2007 Acta Energi. 28 2 (in Chinese) [邓海, 杨德仁, 唐骏, 席珍强, 阙端麟 2005 太阳能学报 28 2]

    [2]

    Shi X B, Xu Z Q, Shi Z R, Zhu T, Wang Y 2006 Journal of Sothern Yangtze University (Natural Science Edition) 5(6) (in Chinese) [石湘波, 许志强, 施正荣, 朱拓 2006 江南大学学报 5 6]

    [3]
    [4]
    [5]

    Min J, Li J H 1995 Research Progress of SSE 15 3 (in Chinese) [闵靖, 陈一, 宗祥福 1995 固体电子学研究与进展 15 3]

    [6]
    [7]

    Ji X B, Zhou Q G, Liu B, Xu J 2009 Chinese J. Rare Metals 32 6 (in Chinese) [籍小兵, 周旗钢, 刘 斌, 徐继平 2009 稀有金属 32 6]

    [8]

    Seidel T, Meek R, Cullis A 1975 J. Appl. Phys. 46 2

    [9]
    [10]
    [11]

    Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K 2008 Prog Photovoltaics 16 2

    [12]
    [13]

    Shabani M B, Yamashita T, Morita E. 2008 Solid State Phenom 131

    [14]

    Prichaud I 2002 Sol. Energ. Mat. Sol. C 72 1

    [15]
    [16]

    Khedher N, Hajji M, Hassen M, Ben Jaballah A, Ouertani B, Ezzaouia H, Bessais B, Selmi A, Bennaceur R 2005 Sol. Energ. Mat. Sol. C 87 1

    [17]
    [18]
    [19]

    Chen J X, Xi Z Q, Wu D D, Yang D R 2007 Acta Energi 28 2

    [20]

    Pletzer T, Stegemann E, Windgassen H, Suckow S, Btzner D, Kurz H. 2011 Prog Photovoltaics 19 8

    [21]
    [22]

    Shockley W 1952 Proceedings of the IRE 40 11

    [23]
    [24]
    [25]

    Hall R N 1952 Physical Review 87 2

    [26]
    [27]

    Krain R, Herlufsen S, Schmidt J 2008 Appl. Phys. Lett. 93

    [28]

    Geranzani P, Pagani M, Pello C, Borionetti G 2002 Internal gettering in silicon: experimental and theoretical studies based on fast and slow diffusing metals Scitec Publications; 1999 p381-386

    [29]
    [30]
    [31]

    Istratov A A, Vinl H, Huber W, Weber E R 2005 Semiconductor Science and Tech 20

    [32]

    Istratov A A, Hieslmair H, Weber E 1999 Appl. Phys. A-Mater 69 1

    [33]
    [34]
    [35]

    Istratov A A, Hieslmair H, Weber E 2000 Appl. Phys. A-Mater 70 5

    [36]

    Komatsu Y, Galbiati G, Lamers M, Venema P, Harris M, Stassen A F, Meyer C, van den Donker M, Weeber A 2009 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany., 2009, 1063-1067

    [37]
    [38]

    Komatsu Y, Koorn M, Vlooswijk A H G, Venema P R, Stassen A F 2011 Energy Procedia 8

    [39]
    [40]

    Manshanden P, Geerligs L 2006 Sol. Energ. Mat. Sol. C 90 7

    [41]
    [42]
    [43]

    Nelson J 2003 The physics of solar cells Vol.57 2003: World Scientific.

    [44]
    [45]

    Green M A 1982 Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p1

    [46]

    Jha A Solar cell technology and applications 2009: Auerbach Publications

    [47]
  • [1] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [2] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [3] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [4] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] 王坚强, 刘邦武, 夏洋, 徐征. 高效黑硅电池组件反光板角度的模拟研究. 物理学报, 2014, 63(1): 018802. doi: 10.7498/aps.63.018802
    [7] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [8] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [10] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [11] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [12] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [13] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [14] 贾明, 田忠良, 赖延清, 李劼, 伊继光, 闫剑锋, 刘业翔. 电解精炼制备太阳级硅杂质行为研究. 物理学报, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [15] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] 奚光平, 马向阳, 田达晰, 曾俞衡, 宫龙飞, 杨德仁. 低温退火对重掺砷直拉硅片的氧沉淀形核的作用. 物理学报, 2008, 57(11): 7108-7113. doi: 10.7498/aps.57.7108
    [17] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银. 空间微小碎片对低轨道航天器太阳电池表面撞击损伤研究. 物理学报, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  5331
  • PDF下载量:  1551
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-08
  • 修回日期:  2012-12-10
  • 刊出日期:  2013-06-05

/

返回文章
返回