搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于SU8聚合物的基因测序芯片

韩伟静 魏清泉 李运涛 周晓光 俞育德

引用本文:
Citation:

一种基于SU8聚合物的基因测序芯片

韩伟静, 魏清泉, 李运涛, 周晓光, 俞育德

Fabrication of SU8-based chip suitable for genomic sequencing

Han Wei-Jing, Wei Qing-Quan, Li Yun-Tao, Zhou Xiao-Guang, Yu Yu-De
PDF
导出引用
  • 基因测序技术极大地推动了生物学和医学研究的发展. 结合了焦磷酸测序 原理及阵列式微反应池芯片的高通量测序仪在从头测序和宏基因组测序方面有着不可替代的作用. 本文首次提出并研制了一种基于SU8聚合物的基因测序芯片. 选择了高传输效率、 低耦合损耗的光纤面板作为基片, 通过改善SU8均匀性及释放应力, 在光纤面板上成功制备出百万数量级阵列式微反应池; 设计并制作侧壁镀膜装置, 实现了SU8阵列式微反应池侧壁选择性光学薄膜蒸镀, 有效地提高了微反应池的光学隔离度, 将相邻微反应池之间的光串扰率平均值从25%降低到了1%, 满足了高通量焦磷酸测序对测序芯片独立并行传输弱光信号的要求. 基于SU8聚合物的基因测序芯片制备工艺简单、成本低廉, 具有良好的应用前景.
    DNA sequencing technology has markedly advanced the development of biological and medicinal sciences. High-throughput pyrosequencing instruments that combine the pyrosequencing with microfabricated high-density picoliter reactors have been proved to be suitable for de novo sequencing and metagenome sequencing. In the present work, we report on an alternative sequencing chip consisting of hundreds of thousands of picoliter sized honeycombed SU8 reaction vessels on a fiber-optic slide by lithography technique for high-throughput pyrosequencing instruments. Highly reproducible fabrication process of SU8 sequencing chip is achieved through the improvement on SU8 film thickness uniformity and relaxation of SU8 residual stress during fabrication. To achieve the optical isolation required for SU8 reaction wells, metal film is selectively deposited on the side walls of the reaction vessels by reformating vacuum coating. With the metal coating, the average value of optical cross talking between SU8 reaction vessels is reduced from 25% to 1%. The SU8 sequencing chip demonstrates an excellent light transmission characteristic and meets the need of pyrosequencing application.
    • 基金项目: 中国科学院科研装备研制项目(批准号: YZ200823)和中国博士后科学基金(批准号: 2011M500371)资助的课题.
    • Funds: Project supported by the Scientific Equipment Research Project of China Academy of Science (Grant No. YZ200823) and the China Postdoctoral Science Foundation (Grant No. 2011M500371).
    [1]

    Sanger F, Nicklen S, Coulson A R 1977 Proc. Natl. Acad. Sci. USA 74 5463

    [2]

    Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P 1996 Anal. Biochem. 242 84

    [3]

    Eid J, Fehr A, Gray J, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Winter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma X X, Marks P, Maxham M, Murphy M, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S 2009 Science 323 133

    [4]

    Branton D, Dreamer D W, Marziali A, Bayley H, Benner S A, Butler T, Ventra M D, Garaj S, Hibbs A, Huang X H, Jovanovich S B, KrsticP S, Lindsay S, Ling X S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni1 G V, Tabard C V, Wanunu M, Wiggin M, Schloss J A 2008 Nat. Biotechnol. 26 1146

    [5]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337 (in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 物理学报 59 4337]

    [6]

    Zhou X G, Ren L F, Li Y T, Zhang M, Yu Y D, Yu J 2010 Sci. China Life Sci. 53 44

    [7]

    Leamon J H, Rothberg J M 2007 Chem. Rev. 107 3367

    [8]

    Margulies M, Egholm M, Altman W E, Attiya1 S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen J T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L I, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P G, Begley R F, Rothberg J M 2005 Nature 437 376

    [9]

    Yuan L N, Ren L F, Li Y T, Han W J, Yu Y, Chu Y N, Liu G M, Yu D, Teng M J, Wang L, Wang X M, Zhou X G, Yu Y D, Yu J 2011 Sci. China Life Sci. 54 835

    [10]

    Leamon J H, Lee W L, Tatrtaro K R, Lanza J R, Sarlis G J, de Winter A D, Berka J, Lohman K L 2003 Electrophoresis 24 3769

    [11]

    Pantano P, Walt D R 1995 Anal. Chem. 65 481A

    [12]

    Walt D R 2010 Chem. Soc. Rev. 39 38

    [13]

    Epstein J R, Leung P K, Lee K H, Walt D R 2003 Biosens. Bioelectron. 18 541

    [14]

    Wang J M, Kong D P, Wang L L 2012 Acta Phys. Sin. 61 054216 (in Chinese) [王金猛, 孔德鹏, 王丽莉 2012 物理学报 61 054216]

    [15]

    Ransley J H T, Watari M, Sukumaran D, McKendry R A, Seshia A A 2006 Microelectron. Eng. 83 1621

    [16]

    El-Ali J, Nielsen I R, Poulsen C R, Bang D D, Telleman P, Wolffa A 2004 Sens. Actuators. A: Phys. 110 3

    [17]

    Sanzaa F J, Lagunaa M F, Casquela R, Holgadoa M, Barriosb C A, Ortegac F J, Romerob D L, Ballesterosa J J, Banulsc M J, Maquieirac A, Puchadesc R 2011 Appl. Surf. Sci. 257 5403

    [18]

    Wang Y L, Sims C E, Marc P, Bachman M, Li G P, Allbritton N L 2006 Langmuir 22 8257

    [19]

    Mackay R E, Le H R, Keatch R P 2011 J. Micro-Nano Mech. 6 13

    [20]

    Verdoy D, Barrenetxeaa Z, Berganzoa J, Agirregabiriab M, Ruano-Lópezb J M, Marimónc J M, Olabarríaa G 2012 Biosens. Bioelectron. 32 259

    [21]

    Shaw M, Nawrocki D, Hurditch R, Johnoson D 2003 Microsyst. Technol. 10 1

    [22]

    Liu G, Tian Y, Kan Y 2005 Microsyst. Technol. 11 343

    [23]

    Hammacher J, Fuelle A, Flaemig J, Saupe J, Loechel B, Grimm J 2008 Microsyst. Technol. 14 1515

    [24]

    Feng R, Farris J 2002 J. Mater. Sci. 37 4793

    [25]

    Nguyen T T N, Nguyen Q L, Zyss J 2013 Appl. Phys. A DOI:10.1007/ s00339-012-7537-7

    [26]

    Tung K K, Wong W H, Pun E Y B 2005 Appl. Phys. A 80 621

    [27]

    Gunde M K, Hauptman N, Macek M, Kunaver M 2009 Appl. Phys. A 95 673

    [28]

    Dai W, Lian K, Wang W J 2005 Microsyst. Technol. 11 526

    [29]

    Macleod H A 1974 Thin-Film Optical Filter (London: Institute of Physics Publishing) p158

  • [1]

    Sanger F, Nicklen S, Coulson A R 1977 Proc. Natl. Acad. Sci. USA 74 5463

    [2]

    Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P 1996 Anal. Biochem. 242 84

    [3]

    Eid J, Fehr A, Gray J, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Winter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma X X, Marks P, Maxham M, Murphy M, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S 2009 Science 323 133

    [4]

    Branton D, Dreamer D W, Marziali A, Bayley H, Benner S A, Butler T, Ventra M D, Garaj S, Hibbs A, Huang X H, Jovanovich S B, KrsticP S, Lindsay S, Ling X S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni1 G V, Tabard C V, Wanunu M, Wiggin M, Schloss J A 2008 Nat. Biotechnol. 26 1146

    [5]

    Jiang S C, Zhang L X, Xia A G, Chen H P 2010 Acta Phys. Sin. 59 4337 (in Chinese) [江绍钏, 章林溪, 夏阿根, 陈宏平 2010 物理学报 59 4337]

    [6]

    Zhou X G, Ren L F, Li Y T, Zhang M, Yu Y D, Yu J 2010 Sci. China Life Sci. 53 44

    [7]

    Leamon J H, Rothberg J M 2007 Chem. Rev. 107 3367

    [8]

    Margulies M, Egholm M, Altman W E, Attiya1 S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen J T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L I, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P G, Begley R F, Rothberg J M 2005 Nature 437 376

    [9]

    Yuan L N, Ren L F, Li Y T, Han W J, Yu Y, Chu Y N, Liu G M, Yu D, Teng M J, Wang L, Wang X M, Zhou X G, Yu Y D, Yu J 2011 Sci. China Life Sci. 54 835

    [10]

    Leamon J H, Lee W L, Tatrtaro K R, Lanza J R, Sarlis G J, de Winter A D, Berka J, Lohman K L 2003 Electrophoresis 24 3769

    [11]

    Pantano P, Walt D R 1995 Anal. Chem. 65 481A

    [12]

    Walt D R 2010 Chem. Soc. Rev. 39 38

    [13]

    Epstein J R, Leung P K, Lee K H, Walt D R 2003 Biosens. Bioelectron. 18 541

    [14]

    Wang J M, Kong D P, Wang L L 2012 Acta Phys. Sin. 61 054216 (in Chinese) [王金猛, 孔德鹏, 王丽莉 2012 物理学报 61 054216]

    [15]

    Ransley J H T, Watari M, Sukumaran D, McKendry R A, Seshia A A 2006 Microelectron. Eng. 83 1621

    [16]

    El-Ali J, Nielsen I R, Poulsen C R, Bang D D, Telleman P, Wolffa A 2004 Sens. Actuators. A: Phys. 110 3

    [17]

    Sanzaa F J, Lagunaa M F, Casquela R, Holgadoa M, Barriosb C A, Ortegac F J, Romerob D L, Ballesterosa J J, Banulsc M J, Maquieirac A, Puchadesc R 2011 Appl. Surf. Sci. 257 5403

    [18]

    Wang Y L, Sims C E, Marc P, Bachman M, Li G P, Allbritton N L 2006 Langmuir 22 8257

    [19]

    Mackay R E, Le H R, Keatch R P 2011 J. Micro-Nano Mech. 6 13

    [20]

    Verdoy D, Barrenetxeaa Z, Berganzoa J, Agirregabiriab M, Ruano-Lópezb J M, Marimónc J M, Olabarríaa G 2012 Biosens. Bioelectron. 32 259

    [21]

    Shaw M, Nawrocki D, Hurditch R, Johnoson D 2003 Microsyst. Technol. 10 1

    [22]

    Liu G, Tian Y, Kan Y 2005 Microsyst. Technol. 11 343

    [23]

    Hammacher J, Fuelle A, Flaemig J, Saupe J, Loechel B, Grimm J 2008 Microsyst. Technol. 14 1515

    [24]

    Feng R, Farris J 2002 J. Mater. Sci. 37 4793

    [25]

    Nguyen T T N, Nguyen Q L, Zyss J 2013 Appl. Phys. A DOI:10.1007/ s00339-012-7537-7

    [26]

    Tung K K, Wong W H, Pun E Y B 2005 Appl. Phys. A 80 621

    [27]

    Gunde M K, Hauptman N, Macek M, Kunaver M 2009 Appl. Phys. A 95 673

    [28]

    Dai W, Lian K, Wang W J 2005 Microsyst. Technol. 11 526

    [29]

    Macleod H A 1974 Thin-Film Optical Filter (London: Institute of Physics Publishing) p158

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240171
    [2] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器. 物理学报, 2022, 71(21): 210701. doi: 10.7498/aps.71.20221137
    [3] 贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖. DNA双链退火压力对DNA聚合酶gp5链置换的调控. 物理学报, 2021, 70(15): 158701. doi: 10.7498/aps.70.20210707
    [4] 石俊凯, 王国名, 黎尧, 高书苑, 刘立拓, 周维虎. 滤波对8字腔掺铒光纤激光器锁模运转的影响. 物理学报, 2019, 68(6): 064206. doi: 10.7498/aps.68.20182144
    [5] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究. 物理学报, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [6] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [7] 肖石燕, 梁好均. DNA及基于DNA链替换反应的分子计算. 物理学报, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [8] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [9] 耿读艳, 谢红娟, 万晓伟, 徐桂芝. 基于DNA损伤的蛋白调控网络研究. 物理学报, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [10] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [11] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [12] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [13] 王金猛, 孔德鹏, 王丽莉. 大尺寸聚合物光纤面板制造新技术的初步研究. 物理学报, 2012, 61(5): 054216. doi: 10.7498/aps.61.054216
    [14] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [15] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究. 物理学报, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [16] 马松山, 徐 慧, 刘小良, 郭爱敏. DNA分子链电子结构特性研究. 物理学报, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [17] 魏志勇, 臧黎慧, 李 明, 范 我, 许玉杰. 射线引起DNA双链断裂的统计分布. 物理学报, 2005, 54(10): 4955-4960. doi: 10.7498/aps.54.4955
    [18] 杨燮龙, 胡炳元, 李香菁, 吴正, 金慧娟, 许桂琴, 张延忠. 纳米微晶Fe69.5(CuCrV)9.5Si13B8超铁磁性研究. 物理学报, 1995, 44(7): 1158-1163. doi: 10.7498/aps.44.1158
    [19] 李宏成, D. G. HINKS. 反应扩散法制备的PbMo6S8超导带的超导特性. 物理学报, 1984, 33(7): 1062-1064. doi: 10.7498/aps.33.1062
    [20] 朱重远. SU6(1)×SU3(2)模型及SU8模型中强子的次强质量分裂和新粒子的质量关系. 物理学报, 1975, 24(5): 351-365. doi: 10.7498/aps.24.351
计量
  • 文章访问数:  4647
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-04-02
  • 刊出日期:  2013-07-05

/

返回文章
返回