搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.0 μm处CO2高温谱线参数测量研究

陈玖英 刘建国 何亚柏 王辽 冮强 许振宇 姚路 袁松 阮俊 何俊峰 戴云海 阚瑞峰

引用本文:
Citation:

2.0 μm处CO2高温谱线参数测量研究

陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰

Study of CO2 spectroscopic parameters at high temperature near 2.0 μm

Chen Jiu-Ying, Liu Jian-Guo, He Ya-Bai, Wang Liao, Gang Qiang, Xu Zhen-Yu, Yao Lu, Yuan Song, Ruan Jun, He Jun-Feng, Dai Yun-Hai, Kan Rui-Feng
PDF
导出引用
  • 研究高温下待测气体的谱线属性, 如谱线强度、自加宽系数、空气加宽系数、温度系数等, 为高温环境中可调谐半导体激光吸收光谱技术反演温度、浓度、速度及其场分布提高精度和可靠性起着十分重要的作用. HITEMP数据库中的数据基本上是理论计算结果, 与实际情况存在相当的误差. 为了获得所选2.0 μm处的可用于燃烧诊断的CO2谱线参数, 本文采用半导体激光器作为光源, 结合实验室的高温测量系统, 记录了700–1300 K温度范围内所选谱线的高温吸收光谱, 获得了各谱线在相应温度下的谱线强度、自展宽系数及温度系数等谱线参数. 测量得到CO2的5006.978 cm-1和5007.7874 cm-1谱线强度与理论计算值相对误差小于11%; 获得了现有数据库缺少的温度系数和高温下自展宽系数数据. 所有各项参数对以后将要进行的燃烧诊断中的CO2浓度检测有很大帮助.
    Reliable spectroscopic parameters of probed species at high temperature, such as line strengths, self-broadening coefficients, air-broadening coefficients, and temperature exponents, are important in absorption spectroscopy for accurately studying species properties, such as temperature, concentration, speed, and their corresponding field distributions. However, parameters from widely used database such as HITEMP are mainly theoretical calculation results, and there exist considerable errors compared with the results in actual situations. In order to validate spectroscopic parameters of CO2 lines used in combustion diagnosis, CO2 spectrum is recorded as a function of temperature in a range between 700 K and 1300 K in experiment using a distributed feed-back diode laser. Parameters of each line are deduced, such as line strengths, self-broadening coefficients and temperature exponents. The relative errors between measured and calculated line-strengths are less than 11% at 5006.978 cm-1 and 5007.7874 cm-1. The measured self-broadening coefficients at different temperatures and temperature exponents are conducive to the detection of CO2 concentration in combustion diagnostics.
    • 基金项目: 国家自然科学基金(批准号: 61108034)、国家自然科学基金青年科学基金(批准号: 61205151)和中国科学院战略性先导科技专项(批准号: XDA05040102)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61108034), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05040102).
    [1]

    Chen J Y, Liu J G, He Y B, Xu Z Y, Li H, Yao L, Yuan S, Ruan J, He J F, Kan R F 2012 Chin. J. Lasers 39 1108004 (in Chinese) [陈玖英, 刘建国, 何亚柏, 许振宇, 李晗, 姚路, 袁松, 阮俊, 何俊峰, 阚瑞峰 2012 中国激光 39 1108004]

    [2]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204]

    [3]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [4]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702]

    [5]

    Linnerud I, Kaspersen P, Jæger T 1998 Appl. Phys. B 67 297

    [6]

    Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043

    [7]

    Palaghita T I, Seitzman J M 2006 44m th AIAA Aerospace Sciences Meeting Reno, Nevada, Jan. 9–12, 2006

    [8]

    Allemand B, Savine B M, Bruchet P, Januard F, Laurent J 2004 Appl. Phys. B 78 503

    [9]

    Allen M G 1998 Measur. Sci. Technol. 9 545

    [10]

    Mattison D W 2006 Ph. D. Dissertation (California: Stanford University)

    [11]

    Wehe S D 2000 Ph. D. Dissertation (California: Stanford University)

    [12]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Molecul. Spectrosc. 239 243

    [13]

    Toth R A, Miller C E, Devi V M, Benner D C, Brown L R 2007 J. Molecul. Spectrosc. 246 133

    [14]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2008 J. Quantit. Spectrosc. Radiat. Trans. 109 906

    [15]

    L X J, Weng C S, Li N 2012 Acta Phys. Sin. 61 234205 (in Chinese) [吕晓静, 翁春生, 李宁 2012 物理学报 61 234205]

    [16]

    Bharadwaj S P, Modest M F 2007 J. Quantit. Spectrosc. Radiat. Trans. 103 146

    [17]

    Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectroscopy and Spectral Analysis 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]

    [18]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quantit. Spectrosc. Radiat. Trans. 111 2139

    [19]

    Leleux D P 2002 Ph. D. Dissertation (Houston: Rice University)

    [20]

    Hong Z K 2005 Ph. D. Dissertation (Toronto: University of Toronto)

  • [1]

    Chen J Y, Liu J G, He Y B, Xu Z Y, Li H, Yao L, Yuan S, Ruan J, He J F, Kan R F 2012 Chin. J. Lasers 39 1108004 (in Chinese) [陈玖英, 刘建国, 何亚柏, 许振宇, 李晗, 姚路, 袁松, 阮俊, 何俊峰, 阚瑞峰 2012 中国激光 39 1108004]

    [2]

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204 (in Chinese) [许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204]

    [3]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [4]

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702 (in Chinese) [宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702]

    [5]

    Linnerud I, Kaspersen P, Jæger T 1998 Appl. Phys. B 67 297

    [6]

    Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043

    [7]

    Palaghita T I, Seitzman J M 2006 44m th AIAA Aerospace Sciences Meeting Reno, Nevada, Jan. 9–12, 2006

    [8]

    Allemand B, Savine B M, Bruchet P, Januard F, Laurent J 2004 Appl. Phys. B 78 503

    [9]

    Allen M G 1998 Measur. Sci. Technol. 9 545

    [10]

    Mattison D W 2006 Ph. D. Dissertation (California: Stanford University)

    [11]

    Wehe S D 2000 Ph. D. Dissertation (California: Stanford University)

    [12]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Molecul. Spectrosc. 239 243

    [13]

    Toth R A, Miller C E, Devi V M, Benner D C, Brown L R 2007 J. Molecul. Spectrosc. 246 133

    [14]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2008 J. Quantit. Spectrosc. Radiat. Trans. 109 906

    [15]

    L X J, Weng C S, Li N 2012 Acta Phys. Sin. 61 234205 (in Chinese) [吕晓静, 翁春生, 李宁 2012 物理学报 61 234205]

    [16]

    Bharadwaj S P, Modest M F 2007 J. Quantit. Spectrosc. Radiat. Trans. 103 146

    [17]

    Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectroscopy and Spectral Analysis 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]

    [18]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quantit. Spectrosc. Radiat. Trans. 111 2139

    [19]

    Leleux D P 2002 Ph. D. Dissertation (Houston: Rice University)

    [20]

    Hong Z K 2005 Ph. D. Dissertation (Toronto: University of Toronto)

计量
  • 文章访问数:  2802
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-21
  • 修回日期:  2013-08-29
  • 刊出日期:  2013-11-05

2.0 μm处CO2高温谱线参数测量研究

  • 1. 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 合肥 230031;
  • 2. 中国航天科工集团三十一研究所, 高超声速冲压发动机技术重点实验室, 北京 100074
    基金项目: 国家自然科学基金(批准号: 61108034)、国家自然科学基金青年科学基金(批准号: 61205151)和中国科学院战略性先导科技专项(批准号: XDA05040102)资助的课题.

摘要: 研究高温下待测气体的谱线属性, 如谱线强度、自加宽系数、空气加宽系数、温度系数等, 为高温环境中可调谐半导体激光吸收光谱技术反演温度、浓度、速度及其场分布提高精度和可靠性起着十分重要的作用. HITEMP数据库中的数据基本上是理论计算结果, 与实际情况存在相当的误差. 为了获得所选2.0 μm处的可用于燃烧诊断的CO2谱线参数, 本文采用半导体激光器作为光源, 结合实验室的高温测量系统, 记录了700–1300 K温度范围内所选谱线的高温吸收光谱, 获得了各谱线在相应温度下的谱线强度、自展宽系数及温度系数等谱线参数. 测量得到CO2的5006.978 cm-1和5007.7874 cm-1谱线强度与理论计算值相对误差小于11%; 获得了现有数据库缺少的温度系数和高温下自展宽系数数据. 所有各项参数对以后将要进行的燃烧诊断中的CO2浓度检测有很大帮助.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回