搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O+DCl→OD+Cl反应的动力学性质研究

许雪松 杨鲲 孙佳石 尹淑慧

引用本文:
Citation:

O+DCl→OD+Cl反应的动力学性质研究

许雪松, 杨鲲, 孙佳石, 尹淑慧

Dynamics for the reaction O+DCl→OD+Cl

Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui
PDF
导出引用
  • 利用准经典轨线方法计算了O+DCl→OD+Cl 反应的动力学性质. 所得到的积分反应截面反映出该反应为典型的放热反应,这与势能面反应路径上没有能垒的特点一致. 其微分反应截面的分布表明反应产物的前向散射和后向散射是不对称的,前向散射强于后向散射,因此该反应遵循间接反应机理,此机理通过对反应轨线进行抽样分析得到验证. 反映两矢量K-J’相关的分布函数P(θr)和取向系数2(J’·K)>值的变化趋势均反映出产物分子OD 的取向程度随碰撞能的增加先减弱后增强. 反映三矢量K-K’-J’相关的二面角分布函数P(ør)表明产物分子转动角动量具有沿y 轴的取向效应,当碰撞能较高时出现了比较明显的沿y 轴正向的定向效应. 随着碰撞能的增加,产物分子的转动由“平面内” 机理向“平面外” 机理过渡.
    With the quasi-classical trajectory method the stereodynamics of the O+DCl→OD+Cl reaction on the ground potential energy surface is investigated. The characteristic of calculated integral cross-section is consistent with that of the non-energy barrier reaction path on the potential energy surface, which implies that the title reaction is a typical exothermic reaction. The obtained differential reaction cross-section shows that the products tend to both forward and backward scattering, and the forward scattering is stronger than the backward one. So we can infer that the reaction follows the indirect reaction mechanism that has been verified by the randomly abstractive reaction trajectories. The distribution curves of P(θr) and 2(J'· K)> reflect that the degree of rotational alignment of the product OD first increases and then decreases with collision energy increasing. The product rotational angular momentum vector J' is aligned along the y-axis direction but is oriented along the positive direction of y-axis at higher collision energy. With the increase of the collision energy the rotation mechanism of the product molecules transits from the “in-plane” mechanism to the “out-of-plane” mechanism.
    • 基金项目: 国家自然科学基金(批准号:11304028)和中央高等学校基本科研基金(批准号:3132014228)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304028) and the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. 3132014228).
    [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 物理学报 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子物理学报 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

  • [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 物理学报 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 物理学报 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子物理学报 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

计量
  • 文章访问数:  1663
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-20
  • 修回日期:  2014-01-23
  • 刊出日期:  2014-05-05

O+DCl→OD+Cl反应的动力学性质研究

  • 1. 大连海事大学物理系, 大连 116026
    基金项目: 

    国家自然科学基金(批准号:11304028)和中央高等学校基本科研基金(批准号:3132014228)资助的课题.

摘要: 利用准经典轨线方法计算了O+DCl→OD+Cl 反应的动力学性质. 所得到的积分反应截面反映出该反应为典型的放热反应,这与势能面反应路径上没有能垒的特点一致. 其微分反应截面的分布表明反应产物的前向散射和后向散射是不对称的,前向散射强于后向散射,因此该反应遵循间接反应机理,此机理通过对反应轨线进行抽样分析得到验证. 反映两矢量K-J’相关的分布函数P(θr)和取向系数2(J’·K)>值的变化趋势均反映出产物分子OD 的取向程度随碰撞能的增加先减弱后增强. 反映三矢量K-K’-J’相关的二面角分布函数P(ør)表明产物分子转动角动量具有沿y 轴的取向效应,当碰撞能较高时出现了比较明显的沿y 轴正向的定向效应. 随着碰撞能的增加,产物分子的转动由“平面内” 机理向“平面外” 机理过渡.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回