搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs/InP柱型量子线中隧穿时间和逃逸问题的研究

黎明 陈军 宫箭

引用本文:
Citation:

InAs/InP柱型量子线中隧穿时间和逃逸问题的研究

黎明, 陈军, 宫箭

Dwell time and escape tunneling in InAs/InP cylindrical quantum wire

Li Ming, Chen Jun, Gong Jian
PDF
导出引用
  • 在有效质量近似和绝热近似下, 利用转移矩阵法研究了电子通过InAs/InP/InAs/InP/InAs柱形量子线共振隧穿二极管的输运问题, 分析和讨论了电子居留时间以及电子的逃逸过程. 详细研究了外加电场、结构尺寸效应对居留时间和电子逃逸的影响. 居留时间随电子纵向能量的演化呈现出共振现象; 同时, 结构的非对称性对电子居留时间有很大的影响, 随着结构非对称性的增加, 居留时间表现出不同的变化. 利用有限差分方法研究了非对称耦合量子盘中电子的相干隧穿逃逸过程.
    Within the framework of the effective mass and adiabatic approximation, the electron transport through an InAs/InP cylindrical quantum wire is studied by using the transfer matrix method. The coherent and escape tunneling processes are analyzed in detail. Influence of external voltage and structure size on the dwell time and escape time are discussed theoretically. A resonant phenomenon of the dwell time for different electron longitudinal energies is observed. A peak value of dwell time appearing at some positions of the bound state increases as the energy level decreases. When a bias is applied on this system along the growth direction, all the peaks of the dwell time shift towards the lower energy and become higher with increasing bias. Furthermore, it can be seen that the asymmetry of structure affects the dwell time obviously. Different results are obtained with the increase of asymmetry of the structure, which can be attributed to a competition between the transmission probabilities through the whole structure and that through a single barrier. Besides, the coherent and escape tunneling processes are also investigated by using a finite-difference method between two asymmetrically coupled quantum disks. It is found that the coherent electron remains oscillating in the two coupled disks. When the right barrier thickness of the nanowire is decreased, a roughly exponential decay of the oscillation charge trapped in both quantum disks is observed. The oscillating period is not affected by the right barrier thickness. However, a great influence of the middle barrier on the oscillation period can be found easily.
    • 基金项目: 国家自然科学基金(批准号:10847005)和内蒙古"草原英才"计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10847005) and the Talent Developing Foundation of Inner Mongolia, China.
    [1]

    Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170

    [2]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955

    [3]

    Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497

    [4]

    Barth J V, Costantini G, Kerm K 2005 Nature 437 671

    [5]

    Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61

    [6]

    Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188

    [7]

    Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34

    [10]

    Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307

    [11]

    Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323

    [12]

    Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052

    [13]

    Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635

    [14]

    Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43

    [15]

    MacColl L A 1932 Phys. Rev. 40 621

    [16]

    Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202

    [17]

    Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 物理学报 62 087303]

    [18]

    Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131

    [19]

    Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750

    [20]

    Kim J U, Lee H H 1998 J. Appl. Phys. 84 907

    [21]

    Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [22]

    Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719

    [23]

    Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356

    [24]

    Li W, Guo Y 2006 Phys. Rev. B 73 205311

    [25]

    Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718

    [26]

    Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317

    [27]

    Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701

    [28]

    Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333

    [29]

    Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59

    [30]

    Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324

    [31]

    Smith F T 1960 Phys. Rev. 118 349

    [32]

    Bttiker M 1983 Phys. Rev. B 27 6178

    [33]

    Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50

  • [1]

    Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170

    [2]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955

    [3]

    Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497

    [4]

    Barth J V, Costantini G, Kerm K 2005 Nature 437 671

    [5]

    Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61

    [6]

    Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188

    [7]

    Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34

    [10]

    Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307

    [11]

    Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323

    [12]

    Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052

    [13]

    Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635

    [14]

    Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43

    [15]

    MacColl L A 1932 Phys. Rev. 40 621

    [16]

    Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202

    [17]

    Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 物理学报 62 087303]

    [18]

    Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131

    [19]

    Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750

    [20]

    Kim J U, Lee H H 1998 J. Appl. Phys. 84 907

    [21]

    Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [22]

    Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719

    [23]

    Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356

    [24]

    Li W, Guo Y 2006 Phys. Rev. B 73 205311

    [25]

    Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718

    [26]

    Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317

    [27]

    Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701

    [28]

    Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333

    [29]

    Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59

    [30]

    Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324

    [31]

    Smith F T 1960 Phys. Rev. 118 349

    [32]

    Bttiker M 1983 Phys. Rev. B 27 6178

    [33]

    Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化. 物理学报, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [3] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [4] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [5] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [6] 杨新荣, 徐波, 赵国晴, 申晓志, 史淑惠, 李洁, 王占国. InP基近红外波段量子线激光器的温度特性研究. 物理学报, 2012, 61(21): 216802. doi: 10.7498/aps.61.216802
    [7] 王秀平, 杨晓红, 韩勤, 鞠研玲, 杜云, 朱彬, 王杰, 倪海桥, 贺继方, 王国伟, 牛智川. 图形衬底量子线生长制备与荧光特性研究. 物理学报, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [8] 张红, 张春元, 张慧亮, 刘建军. 外加磁场下抛物型量子线中的带电激子. 物理学报, 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [9] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [10] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [11] 李 宏, 郭华忠, 路 川, 李 玲, 高 洁. 声表面波单电子输运器件中量子线的电学特性研究. 物理学报, 2008, 57(9): 5863-5868. doi: 10.7498/aps.57.5863
    [12] 李晓薇. 量子线/绝缘层/p波超导体结的隧道谱. 物理学报, 2007, 56(10): 6033-6037. doi: 10.7498/aps.56.6033
    [13] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质. 物理学报, 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [14] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [15] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [16] 胡振华, 黄德修. 用Ξ形四能级模型研究非对称耦合量子阱非定域激子复合发光. 物理学报, 2004, 53(4): 1195-1200. doi: 10.7498/aps.53.1195
    [17] 朱 莉, 郑厚植, 谭平恒, 周 霞, 姬 扬, 杨富华, 李桂荣, 曾宇昕. 能级填充对量子阱光学性质的影响. 物理学报, 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
    [18] 杨 谋, 周光辉, 肖贤波. 太赫兹电磁场照射下量子线中的纳米电子力. 物理学报, 2003, 52(8): 2037-2040. doi: 10.7498/aps.52.2037
    [19] 赵继刚, 邵彬, 王太宏. InAs自组装量子点GaAs肖特基二级管的电学特性研究. 物理学报, 2002, 51(6): 1355-1359. doi: 10.7498/aps.51.1355
    [20] 王传奎, 江兆潭. 一类弯曲量子线的量子束缚态. 物理学报, 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
计量
  • 文章访问数:  5512
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-08-04
  • 刊出日期:  2014-12-05

/

返回文章
返回