搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型硒化锑材料及其光伏器件研究进展

薛丁江 石杭杰 唐江

引用本文:
Citation:

新型硒化锑材料及其光伏器件研究进展

薛丁江, 石杭杰, 唐江

Recent progress in material study and photovoltaic device of Sb2Se3

Xue Ding-Jiang, Shi Hang-Jie, Tang Jiang
PDF
导出引用
  • 硒化锑(Sb2Se3)是一种二元单相化合物, 原料储量大、毒性低、价格便宜; 同时其禁带宽度合适(~1.15 eV), 吸光系数大(>105 cm-1), 长晶温度低, 非常适合制作新型低成本低毒的薄膜太阳能电池, 理论光电转换效率可达30%以上. 目前文献报道的Sb2Se3薄膜太阳能电池效率已达3.7%, 初步证明了Sb2Se3材料在薄膜太阳能电池应用方面的巨大潜力. 本文综述了近年来Sb2Se3太阳能电池的研究进展, 着重介绍了Sb2Se3的材料特性和薄膜制备及相关理论研究, 阐述了不同结构电池器件的研究进展, 并对其发展趋势进行了展望.
    Recently, antimony selenide (Sb2Se3) has been proposed as an alternative earth-abundant absorber material for thin film solar cells. Sb2Se3 is a simple V2-VI3 binary compound with an orthorhombic crystal structure and a space group of Pnma 62. It is a staggered layered compound consisting of parallel 1D (Sb4Se6)n ribbons held together by weak van der Waals forces. Sb2Se3 has a direct band gap of approximately 1.15 eV with a large absorption coefficient (>105 cm-1, at short wavelength) and a low grain growth temperature (~300^{o}C), facilitating the fabrication of low-cost thin film solar cells. Moreover, it is a simple binary compound in single phase with a fixed composition, which provides a much simpler growth chemistry than the multicomponent Cu2ZnSn(S,Se)4. In addition, it is stable upon exposure to the ambient air, thus having a better prospect for long-term stability than the organic-inorganic halide perovskite solar cells. Theoretical analysis indicates that the efficiency limit is >30% for single junction Sb2Se3 solar cells. Various approaches, including vacuum evaporation, electrodeposition, spray pyrolysis, and chemical bath deposition (CBD), have been explored to produce Sb2Se3 thin films; however, it is only in these years that Sb2Se3 solar cells have been reported by our group as well as by others. Seok's group presented the deposition of Sb2Se3 on mesoporous TiO2 films by thermal decomposition of Sb2Se3 single-source precursors, and fabricated Sb2Se3-sensitized inorganic-organic heterojunction solar cells with a remarkable efficiency of 3.21%. Tena-Zaera's group fabricated the FTO/TiO2/Sb2Se3/CuSCN/Au heterojunction device and achieved 2.1% device efficiency; their Sb2Se3 was obtained by an electrodeposition route and CuSCN served as a hole conducting layer. Different from the above Sb2Se3-sensitized solar cells reported by other groups, our group is the first in the world working on Sb2Se3 thin film solar cells so far as wu know. We have fabricated a hydrazine solution-processed TiO2/Sb2Se3 heterojunction solar cell, achieving 2.26% device efficiency (Voc = 0.52 V, Jsc = 10.3 mA/cm2 and m FF = 42.3%). In addition to the solution processing method, thermal-evaporated substrate and superstrate CdS/Sb2Se3 thin film solar cells with 2.1% and 1.9% efficiencies respectively were also demonstrated by our group. Recently, we have further improved the superstrate device performance to 3.7% (Voc=0.335 V, Jsc=24.4 mA/cm2, and m FF=46.8%$) by using a post selenization step. Selenization can compensate the Se loss during thermal evaporation, attenuate selenium vacancy-related recombination loss and hence improve the device performance. In summary, this paper summarizes the recent research progress in Sb2Se3-related researches, including material properties of Sb2Se3, synthesis of Sb2Se3 nanomaterials and thin films, theoretical studies on electrical properties, device configuration and efficiency improvement of Sb2Se3 sensitized and thin film solar cells. This review also presents a perspective on future development of Sb2Se3 solar cells.
    • 基金项目: 国家自然科学基金(批准号: 91433105, 61322401, 61274055, 21403078)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91433105, 61322401, 61274055, 21403078).
    [1]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506

    [3]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705

    [4]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [5]

    Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974

    [6]

    Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496

    [7]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846

    [8]

    Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042

    [9]

    Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125

    [10]

    Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y 2012 Appl. Surf. Sci. 261 510

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Messina S, Nair M T S, Nair P K 2009 J. Electrochem. Soc. 156 H327

    [13]

    Deng Z, Mansuripur M, Muscat A J 2009 Nano Lett. 9 2015

    [14]

    Zhai T, Ye M, Li L, Fang X, Liao M, Li Y, Koide Y, Bando Y, Golberg D 2010 Adv. Mater. 22 4530

    [15]

    Rajpure K Y, Bhosale C H 2000 Mater. Chem. Phys. 62 169

    [16]

    El-Sayad E A 2008 J. Non-Cryst. Solids 354 3806

    [17]

    Guijarro N, Lutz T, Lana-Villarreal T, O'Mahony F, Gómez R, Haque S A 2012 J. Phys. Chem. Lett. 3 1351

    [18]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [19]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Nanotechnology 22 175705

    [20]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S I 2014 Angew. Chem. Int. Ed. 126 1353

    [21]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S I 2014 Adv. Eng. Mater. 4 1301680

    [22]

    Ngo T T, Chavhan S, Kosta I, Miguel O, Grande H J, Tena-Zaera R 2014 ACS Appl. Mater. Interfaces 6 2836

    [23]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J 2014 Appl. Phys. Lett. 104 173904

    [26]

    Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J 2014 Appl. Phys. Lett. 105 083905

    [27]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687

  • [1]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506

    [3]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705

    [4]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [5]

    Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974

    [6]

    Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496

    [7]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846

    [8]

    Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042

    [9]

    Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125

    [10]

    Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y 2012 Appl. Surf. Sci. 261 510

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Messina S, Nair M T S, Nair P K 2009 J. Electrochem. Soc. 156 H327

    [13]

    Deng Z, Mansuripur M, Muscat A J 2009 Nano Lett. 9 2015

    [14]

    Zhai T, Ye M, Li L, Fang X, Liao M, Li Y, Koide Y, Bando Y, Golberg D 2010 Adv. Mater. 22 4530

    [15]

    Rajpure K Y, Bhosale C H 2000 Mater. Chem. Phys. 62 169

    [16]

    El-Sayad E A 2008 J. Non-Cryst. Solids 354 3806

    [17]

    Guijarro N, Lutz T, Lana-Villarreal T, O'Mahony F, Gómez R, Haque S A 2012 J. Phys. Chem. Lett. 3 1351

    [18]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [19]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Nanotechnology 22 175705

    [20]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S I 2014 Angew. Chem. Int. Ed. 126 1353

    [21]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S I 2014 Adv. Eng. Mater. 4 1301680

    [22]

    Ngo T T, Chavhan S, Kosta I, Miguel O, Grande H J, Tena-Zaera R 2014 ACS Appl. Mater. Interfaces 6 2836

    [23]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J 2014 Appl. Phys. Lett. 104 173904

    [26]

    Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J 2014 Appl. Phys. Lett. 105 083905

    [27]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687

  • [1] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [3] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [4] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [5] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [6] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [7] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [8] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [9] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [10] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [11] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [12] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [14] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [15] 梁钊铭, 吴永刚, 夏子奂, 周建, 秦雪飞. 前后光栅周期对于双光栅结构薄膜太阳能电池光俘获效应的影响. 物理学报, 2014, 63(19): 198801. doi: 10.7498/aps.63.198801
    [16] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 碲化镉薄膜太阳能电池电学特性参数分析. 物理学报, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [18] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [19] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  12922
  • PDF下载量:  17231
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2015-01-15
  • 刊出日期:  2015-02-05

/

返回文章
返回