-
本文介绍了新型铁电-半导体耦合光伏器件的发展历史和现状, 阐述了所观察到的非经典行为, 即开路电压在直流偏置电场控制下的迟滞的现象. 将之与含有光诱导偶极子场的有机光伏器件和量子点电池、压电光电子器件、铁电光伏器件、钙钛矿电池等进行比较, 发现偶极子极化电场在多种光伏器件中均存在, 甚至可能起到主导作用. 因此, 提出了偶极子场半导体器件的概念, 期望从更广义的范围涵盖结场型器件和非结场型偶极子器件, 为促进光伏发电领域更多的创新提供思路.
-
关键词:
- 铁电-半导体耦合太阳能电池 /
- 纳米偶极子太阳能电池 /
- 偶极子场半导体器件
This paper introduces the history and current research status of the novel ferroelectric-semiconductor coupled photovoltaic devices, in which a ferroelectric field of polarized dipoles from nanoparticles separates the photogenerated carriers. Fabrication of such devices by combining a CdS nanodipole and a CdTe absorber via a feasible method is described, which involves a phase segregation process of CdS from a CdS-CdTe pseudobinary system. An irregular behavior is observed on this type of devices, i.e. the hysteresis of open circuit voltage due to external bias of direct-current (DC) electric field. Other macroscopic and microscopic evidences of the dipole field photovoltaic effect are also described. Meanwhile, similar photovoltaic mechanism observed in other types of solar cells are also discussed, such as organic photovoltaic devices and quantum dot devices with photo-induced dipole polarization field, piezo-phototronic devices, ferroelectric photovoltaic devices, as well as perovskite solar cells. It is apparent that the polarization field of dipoles not only exists in the various types of photovoltaic devices, but also may dominate the behavior of devices. Therefore, we propose that a new concept of dipole field semiconductor devices could be properly used to explain the photovoltaic behavior of both junctional and un-junctional devices. The junctional devices could function with either pn junction or Schottky junction, while the un-junctional devices include all the devices mentioned above. We expect that various innovation should be inspired by this concept in photovoltaic community.-
Keywords:
- ferroelectric-semiconductor coupled solar cell /
- nano-dipole solar cell /
- dipole field semiconductor devices
[1] Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789
[2] O'regan B, Grfitzeli M 1991 nature 353 737
[3] Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507
[4] Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1
[5] Shvydka D, Karpov V G 2009 US Patent 2009094366
[6] Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260
[7] McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462
[8] Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501
[9] Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432
[10] Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254
[11] Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865
[12] Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955
[13] Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132
[14] Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042
[15] Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728
[16] Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845
[17] Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456
[18] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[19] Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387
[20] Wang Z L 2008 Adv. Funct. Mater. 18 3553
[21] Wang Z L 2007 Adv. Mater. 19 889
[22] Wang Z L 2009 Materials Science and Engineering: Reports 64 33
[23] Wang Z L 2010 J. Phys. Chem. Lett. 1 1388
[24] Wang Z L, Song J 2006 Science 312.242
[25] Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.
[26] Qin Y, Wang X, Wang Z L 2008 Nature 451 809
[27] Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768
[28] He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781
[29] Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107
[30] Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50
[31] Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004
[32] Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423
[33] Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740
[34] Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59
[35] Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313
[36] Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981
[37] Kraut W, Baltz R 1979 Phys. Rev. B 19 1548
[38] Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559
[39] Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317
[40] Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912
[41] Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904
[42] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63
[43] Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.
[44] Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295
[45] Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970
[46] Huang H 2010 Nat.Photonics 4 134
[47] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[48] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901
[49] Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511
[50] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662
[51] Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870
[52] Hodes G 2013 Science 342 317
[53] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[54] Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897
-
[1] Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789
[2] O'regan B, Grfitzeli M 1991 nature 353 737
[3] Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507
[4] Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1
[5] Shvydka D, Karpov V G 2009 US Patent 2009094366
[6] Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260
[7] McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462
[8] Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501
[9] Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432
[10] Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254
[11] Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865
[12] Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955
[13] Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132
[14] Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042
[15] Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728
[16] Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845
[17] Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456
[18] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[19] Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387
[20] Wang Z L 2008 Adv. Funct. Mater. 18 3553
[21] Wang Z L 2007 Adv. Mater. 19 889
[22] Wang Z L 2009 Materials Science and Engineering: Reports 64 33
[23] Wang Z L 2010 J. Phys. Chem. Lett. 1 1388
[24] Wang Z L, Song J 2006 Science 312.242
[25] Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.
[26] Qin Y, Wang X, Wang Z L 2008 Nature 451 809
[27] Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768
[28] He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781
[29] Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107
[30] Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50
[31] Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004
[32] Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423
[33] Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740
[34] Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59
[35] Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313
[36] Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981
[37] Kraut W, Baltz R 1979 Phys. Rev. B 19 1548
[38] Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559
[39] Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317
[40] Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912
[41] Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904
[42] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63
[43] Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.
[44] Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295
[45] Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970
[46] Huang H 2010 Nat.Photonics 4 134
[47] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[48] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901
[49] Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511
[50] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662
[51] Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870
[52] Hodes G 2013 Science 342 317
[53] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[54] Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897
计量
- 文章访问数: 8160
- PDF下载量: 1625
- 被引次数: 0