搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al掺杂对HfO2俘获层可靠性影响第一性原理研究

蒋先伟 代广珍 鲁世斌 汪家余 代月花 陈军宁

引用本文:
Citation:

Al掺杂对HfO2俘获层可靠性影响第一性原理研究

蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁

Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study

Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning
PDF
导出引用
  • 采用基于MS(Materials Studio)软件和密度泛函理论的第一性原理方法, 研究了HfO2 俘获层的电荷俘获式存储器(Charge Trapping Memory, CTM)中电荷的保持特性以及耐擦写性. 在对单斜晶HfO2中四配位氧空位(VO4) 缺陷和VO4 与Al替位Hf掺杂的共存缺陷体(Al+VO4)两种超晶胞模型进行优化之后, 分别计算了其相互作用能、形成能、Bader电荷、态密度以及缺陷俘获能. 相互作用能和形成能的计算结果表明共存缺陷体中当两种缺陷之间的距离为2.216 时, 结构最稳定、缺陷最容易形成; 俘获能计算结果表明, 共存缺陷体为双性俘获, 且与VO4缺陷相比, 俘获能显著增大; Bader电荷分析表明共存缺陷体更有利于电荷保持; 态密度的结果说明共存缺陷体对空穴的局域能影响较强; 计算两种模型擦写电子前后的能量变化表明共存缺陷体的耐擦写性明显得到了改善. 因此在HfO2俘获层中可以通过加入Al杂质来改善存储器的保持特性和耐擦写性. 本文的研究可为改善CTM数据保持特性和耐擦写性提供一定的理论指导.
    In this work, the first-principles method based on materials studio(a soft ware) and the density functional theory is used to invesigate the properties of charge reflention and charge endurance in HfO2 as a trapping layer in charge trapping memory (CTM). Two supercell models are optimized for the monoclinic HfO2, separately. One contains a four-fold-coordinated O vacancy defect (VO4), and the other is a co-doped composite defect consisting of a VO4 and an Al atom. Interaction energies, formation energies, Bader charge, density of states and trapping energy are calculated for the two models. According to the calculated results of interaction energies and formation energies, it is found that the structure is the most stable and the defect is the most easily formed when the distance between the two kinds of defects is of 2.216 in the co-doped composite defect system. The trapping energy results show that the co-doped composite defect system can trap both electrons and holes. Moreover, the trapping ability of the co-doped composite defect is enhanced significantly as compared with the VO4 defect. Bader charge analysis shows that the co-doped composite defect system provides a more preflerable site for the charge reflention. Calculations of the density of states show that the co-doped composite defect system has a strong effect on the trapping energy of holes. Calculated energy changes after program/erase cycles show that the endurance is improved obviously in the co-doped composite defect system. In conclusion, the date reflention and endurance in the trapping layer of monoclinic HfO2 can be improved by doping of the substitutional impurity Al. This work may provide a theoretical guidance for performance improvement with respect to the date reflention and endurance of CTM.
    • 基金项目: 国家自然科学基金面上项目(批准号: 61376106), 国家自然科学基金青年项目(批准号: 21201052), 安徽高校自然科学研究重点项目(批准号: KJ2013A224)和2013安徽高校省级优秀青年重点项目(批准号: 2013SQRL065ZD)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106), the National Natural Science Foundation of China (Grant No. 21201052), the Key University Science Research Project of Anhui Province (Grant No.KJ2013A224), and the universities in Anhui Province outstanding youth of key projects (Grant Nos. 2013SQRL065ZD).
    [1]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [2]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [3]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [4]

    Lee C H, Hur S H, Shin Y C, Choi J H, Park D G, Kim K 2005 Appl. Phys. Lett. 86 152908

    [5]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [6]

    Chang M, Hasan M, Jung S, Park H, Jo M, Choi H, Kwon M, Hwang H, Choi S 2007 Microelectron. Eng. 84 2002

    [7]

    Yang H J, Cheng C F, Chen W B, Lin S H, Yeh F S, McAlister S P, Chin A 2008 IEEE Trans. Electron Devices 55 1417

    [8]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 VLSI Symp. Tech. Dig. 44

    [10]

    Wu J Y, Chen Y T, Lin M H, Wu T B 2010 IEEE Electron Dev. Lett. 31 993

    [11]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [12]

    Zhang H W, Gao B, Sun B, Chen G P, Zeng L, Liu L F 2010 Appl. Phys. Lett. 96 123502

    [13]

    Lan X X, Ou X, Cao Y Q, Tang S Y, Gong C J, Xu B, Xia Y D, Yin J, Li A D, Yan F, Liu Z G 2013 J. Appl. Phys. 114 044104

    [14]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [15]

    Zhou P L, Zheng S K, Tian Y, Zhang S M, Shi R Q, He J F, Yan X B 2014 Acta Phys. Sin. 63 053102 (in Chinese) [周鹏力, 郑树凯, 田言, 张塑铭, 史茹倩, 何静芳, 闫小兵 2014 物理学报 63 053102]

    [16]

    Zhang W, Hou Z F 2012 Phys. Status Solidi B 250 1

    [17]

    Matsunaga K, Tanaka T and Yamamoto T, Ikuhara Y 2003 Phys. Rev. B 68 085110

    [18]

    Tan T T, Chen X, Guo T T, Liu Z T 2013 Chinese J. Struct. Chem. 32 1013

    [19]

    Van de Walle C G, Neugebauer J 2004 Appl. Phys. 95 3851

    [20]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikow A V 2009 Microelectron. Eng. 86 1866

    [21]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [22]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [23]

    Zhang B X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p25 (in Chinese) [张培新, 陈建华, 魏群 2012 掺杂材料分子模拟与计算 (北京: 科学出版社) 第25页]

    [24]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [27]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 物理学报 63 077101]

    [28]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

    [29]

    Queisser H J, Haller E E 1998 Science 281 945

  • [1]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [2]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [3]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [4]

    Lee C H, Hur S H, Shin Y C, Choi J H, Park D G, Kim K 2005 Appl. Phys. Lett. 86 152908

    [5]

    Tan Y N, Chim W K, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [6]

    Chang M, Hasan M, Jung S, Park H, Jo M, Choi H, Kwon M, Hwang H, Choi S 2007 Microelectron. Eng. 84 2002

    [7]

    Yang H J, Cheng C F, Chen W B, Lin S H, Yeh F S, McAlister S P, Chin A 2008 IEEE Trans. Electron Devices 55 1417

    [8]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 VLSI Symp. Tech. Dig. 44

    [10]

    Wu J Y, Chen Y T, Lin M H, Wu T B 2010 IEEE Electron Dev. Lett. 31 993

    [11]

    Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 IEEE Electron Dev. Lett. 29 265

    [12]

    Zhang H W, Gao B, Sun B, Chen G P, Zeng L, Liu L F 2010 Appl. Phys. Lett. 96 123502

    [13]

    Lan X X, Ou X, Cao Y Q, Tang S Y, Gong C J, Xu B, Xia Y D, Yin J, Li A D, Yan F, Liu Z G 2013 J. Appl. Phys. 114 044104

    [14]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [15]

    Zhou P L, Zheng S K, Tian Y, Zhang S M, Shi R Q, He J F, Yan X B 2014 Acta Phys. Sin. 63 053102 (in Chinese) [周鹏力, 郑树凯, 田言, 张塑铭, 史茹倩, 何静芳, 闫小兵 2014 物理学报 63 053102]

    [16]

    Zhang W, Hou Z F 2012 Phys. Status Solidi B 250 1

    [17]

    Matsunaga K, Tanaka T and Yamamoto T, Ikuhara Y 2003 Phys. Rev. B 68 085110

    [18]

    Tan T T, Chen X, Guo T T, Liu Z T 2013 Chinese J. Struct. Chem. 32 1013

    [19]

    Van de Walle C G, Neugebauer J 2004 Appl. Phys. 95 3851

    [20]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikow A V 2009 Microelectron. Eng. 86 1866

    [21]

    Lee C K, Cho E, Lee H S, Hwang C, Han S 2008 Phys. Rev. B 78 012102

    [22]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [23]

    Zhang B X, Chen J H, Wei Q 2012 Molecular Simulation and Calculation for Doped Material (Beijing: Science Press) p25 (in Chinese) [张培新, 陈建华, 魏群 2012 掺杂材料分子模拟与计算 (北京: 科学出版社) 第25页]

    [24]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [27]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 物理学报 63 077101]

    [28]

    Deng N, Pang H, Wu W 2014 Chin. Phys. B 23 107306

    [29]

    Queisser H J, Haller E E 1998 Science 281 945

  • [1] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [4] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [5] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [6] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [7] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [8] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [9] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [10] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [11] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [12] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [13] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [14] 汪家余, 赵远洋, 徐建彬, 代月花. 缺陷对电荷俘获存储器写速度影响. 物理学报, 2014, 63(5): 053101. doi: 10.7498/aps.63.053101
    [15] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [18] 何旭, 何林, 唐明杰, 徐明. 第一性原理研究空位点缺陷对高压下LiF的电子结构和光学性质的影响. 物理学报, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [19] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
计量
  • 文章访问数:  5198
  • PDF下载量:  4285
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-17
  • 修回日期:  2014-12-11
  • 刊出日期:  2015-05-05

/

返回文章
返回