搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高纯铜初始层裂的微损伤特性研究

彭辉 裴晓阳 李平 贺红亮 柏劲松

引用本文:
Citation:

高纯铜初始层裂的微损伤特性研究

彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松

Micro-damage characteristics of incipient spall in high-purity copper

Peng Hui, Pei Xiao-Yang, Li Ping, He Hong-Liang, Bai Jin-Song
PDF
导出引用
  • 本文对平面冲击加载下高纯铜初始层裂的微损伤特性进行了研究. 利用准三维的表面轮廓测试技术, 对冲击加载软回收的样品截面进行测试. 通过对测试数据的重构、量化和统计分析, 结果表明: 拉伸应力持续时间和加载应力幅值的增加, 都会加剧样品内部损伤局域化程度. 样品内损伤区域宽度是亚微米尺度的损伤演化的结果, 并且亚微米尺度的演化速率随着拉伸应变率的增加而单调递增. 通过统计获得了样品内微损伤的尺寸分布特征, 并分析了其与损伤演化进程的关联.
    Dynamic damage of material is a complex process that is dependent on lots of effects on a mesoscale, including grain size, morphology and micro-voids. In order to study the shocked lead micro-damage characteristics in oxygen-free high-purity copper, the variational thickness values of flyers and samples are designed to vary pulse duration and strain rate in plate-impact experiment, and the special recovery chamber and surface profile measurement system are used for soft-recovery and cross-section measure respectively. Based on the reconstruction, quantitative and statistical analysis, it is found that the longer pulse duration and higher shock loading stress bring about more serious local damage in oxygen-free high-purity copper. The mensurable damage width of sample cross-section results from the damage evolution on a sub-micron scale. Critical evolution time of sub-micron is observed to decrease with strain rate increasing, suggesting that damage evolution speed of sub-micron becomes faster as strain rate increases. The void size distribution of recovered sample is presented, and the topological characteristic transition accompanied with nucleation, growth, and coalescence processes of microscopic voids is also discussed. Through a comparison of difference between this work and the literature of previous research, a physical explanation of voids size distribution characteristics of oxygen-free high-purity copper is presented.
      通信作者: 李平, lp0703@263.net
    • 基金项目: 国家自然科学基金 (批准号: 11202196, 11532012, 11372294)、国防基础科研计划 (批准号: B1520132013)、冲击波物理与爆轰物理国防科技重点实验室基金 (批准号: 9140C670301150C67290)和中国工程物理研究院院长基金 (批准号: 201402084) 资助的课题.
      Corresponding author: Li Ping, lp0703@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202196, 11532012, 11372294), National Defense Basic Scientific Research program of China (Grant No. B1520132013), the National Key Laboratory of Shock Wave and Detonation Physics (Grant No. 9140C670301150C67290), and the Foundation of President of China Academy of Engineering Physics (Grant No. 201402084).
    [1]

    Lu K 2010 Science 328 319

    [2]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [3]

    Kawamura H, Hatano T, Kato N, Biswas S, Chakrabarti B K 2012 Rev. Mod. Phys. 84 839

    [4]

    Sagis L M C 2011 Rev. Mod. Phys. 83 1367

    [5]

    Zhang Z F, Wang Z G 2008 Prog. Mater. Sci. 53 1025

    [6]

    Han W Z, An Q, Luo S N, Germann T C, Tonks D L, Goddard W A 2012 Phys. Rev. B 85 024107

    [7]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [8]

    Kanel G I 2010 Int. J. Fracture 163 173

    [9]

    Lebensohn R A, Escobedo J P, Cerreta E K, Dennis-Koller D, Bronkhorst C A, Bingert J F 2013 Acta Mater. 61 6918

    [10]

    Mayer A E, Krasnikov V S 2011 Eng. Fract. Mech. 78 1306

    [11]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Cuitino A M, Ortiz M 1995 Acta Mater. 44 427

    [14]

    Fensin S J, Escobedo-Diaz J P, Brandl C, Cerreta E K, GrayIII G T, Germann T C, Valone S M 2014 Acta Mater. 64 113

    [15]

    Razorenov S V, Zaretsky E B, Savinykh A S 2014 Journal of Physics: Conference Series 500 112053

    [16]

    Whelchel R L, Sanders T H, Thadhani N N 2014 Scr. Mater. 92 59

    [17]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [18]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [19]

    Kondrokhina I N, Podurets A M, Ignatova O N, Nadezhin S S, Skokov V I, Malyshev A N,Bat'kov Y V 2012 19th European Conference on Fracture p1

    [20]

    Bontaz-Carion J, Pellegrini Y 2006 Adv. Eng. Mater. 8 480

    [21]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [22]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [23]

    Qi M L, Bie B X, Zhao F P, Hu C M, Fan D, Ran X X, Xiao X H, Yang W G, Li P, Luo S N 2014 AIP Advances 4 077118

    [24]

    Peng H, Li P, Pei X Y, He H L, Qi M L 2013 Opt. Pre. Eng. 21 3008 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 祁美兰 2013 光学精密工程 21 3008]

    [25]

    Williams C L 2012 Ph. D. Dissertation (Baltimore, Maryland: Johns Hopkins University)

    [26]

    Tuler F R, Butcher B M 1968 Int. J. Fracture 4 431

    [27]

    Molinari A, Wright T W 2005 J. Mech. Phy. Solids 53 1476

    [28]

    Strachan A, Çaín T, Goddard W 2001 Phys. Rev. B 63 060103

    [29]

    Belak J 1998 J. Comput.-Aided Mater. 5 193

    [30]

    Reina C, Marian J, Ortiz M 2011 Phys. Rev. B 84 104117

    [31]

    Pei X Y 2013 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)]

  • [1]

    Lu K 2010 Science 328 319

    [2]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [3]

    Kawamura H, Hatano T, Kato N, Biswas S, Chakrabarti B K 2012 Rev. Mod. Phys. 84 839

    [4]

    Sagis L M C 2011 Rev. Mod. Phys. 83 1367

    [5]

    Zhang Z F, Wang Z G 2008 Prog. Mater. Sci. 53 1025

    [6]

    Han W Z, An Q, Luo S N, Germann T C, Tonks D L, Goddard W A 2012 Phys. Rev. B 85 024107

    [7]

    Jarmakani H, Maddox B, Wei C T, Kalantar D, Meyers M A 2010 Acta Mater. 58 4604

    [8]

    Kanel G I 2010 Int. J. Fracture 163 173

    [9]

    Lebensohn R A, Escobedo J P, Cerreta E K, Dennis-Koller D, Bronkhorst C A, Bingert J F 2013 Acta Mater. 61 6918

    [10]

    Mayer A E, Krasnikov V S 2011 Eng. Fract. Mech. 78 1306

    [11]

    Shao J L, Wang P, He A M, Zhang R, Qin C S 2013 J. Appl. Phys. 114 173501

    [12]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131

    [13]

    Cuitino A M, Ortiz M 1995 Acta Mater. 44 427

    [14]

    Fensin S J, Escobedo-Diaz J P, Brandl C, Cerreta E K, GrayIII G T, Germann T C, Valone S M 2014 Acta Mater. 64 113

    [15]

    Razorenov S V, Zaretsky E B, Savinykh A S 2014 Journal of Physics: Conference Series 500 112053

    [16]

    Whelchel R L, Sanders T H, Thadhani N N 2014 Scr. Mater. 92 59

    [17]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [18]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [19]

    Kondrokhina I N, Podurets A M, Ignatova O N, Nadezhin S S, Skokov V I, Malyshev A N,Bat'kov Y V 2012 19th European Conference on Fracture p1

    [20]

    Bontaz-Carion J, Pellegrini Y 2006 Adv. Eng. Mater. 8 480

    [21]

    Qi M L, Zhong S, He H L, Fan D, Zhao L 2013 Chin. Phys. B 22 046203

    [22]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [23]

    Qi M L, Bie B X, Zhao F P, Hu C M, Fan D, Ran X X, Xiao X H, Yang W G, Li P, Luo S N 2014 AIP Advances 4 077118

    [24]

    Peng H, Li P, Pei X Y, He H L, Qi M L 2013 Opt. Pre. Eng. 21 3008 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 祁美兰 2013 光学精密工程 21 3008]

    [25]

    Williams C L 2012 Ph. D. Dissertation (Baltimore, Maryland: Johns Hopkins University)

    [26]

    Tuler F R, Butcher B M 1968 Int. J. Fracture 4 431

    [27]

    Molinari A, Wright T W 2005 J. Mech. Phy. Solids 53 1476

    [28]

    Strachan A, Çaín T, Goddard W 2001 Phys. Rev. B 63 060103

    [29]

    Belak J 1998 J. Comput.-Aided Mater. 5 193

    [30]

    Reina C, Marian J, Ortiz M 2011 Phys. Rev. B 84 104117

    [31]

    Pei X Y 2013 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)]

  • [1] 刘军, 王裴, 孙致远, 张凤国, 何安民. 金属微层裂区气体渗入现象的一种近似理论分析. 物理学报, 2021, 70(9): 098301. doi: 10.7498/aps.70.20201145
    [2] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [3] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究. 物理学报, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [4] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [5] 张凤国, 刘军, 何安民, 王裴, 王昆, 周洪强, 赵福祺. 层裂损伤孔洞增长模型参数的确定方法及其应用. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [6] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [7] 裴晓阳, 彭辉, 贺红亮, 李平. 加载应力幅值对高纯铜动态损伤演化特性研究. 物理学报, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [8] 叶扬, 王树林. 铜微颗粒碰撞阻尼特性. 物理学报, 2014, 63(22): 224304. doi: 10.7498/aps.63.224304
    [9] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响. 物理学报, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [10] 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷的层裂强度及冲击压缩损伤机理研究. 物理学报, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [11] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [12] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [13] 王永刚, 胡剑东, 祁美兰, 贺红亮. 基于单孔洞近似的高纯铝部分层裂实验的数值模拟研究. 物理学报, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [14] 张凤国, 周洪强, 张广财, 洪滔. 惯性及弹塑性效应对延性金属材料层裂损伤的影响. 物理学报, 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [15] 王永刚, 贺红亮, M. Boustie, T. Sekine. 强激光辐照下纳米晶体铜薄膜层裂破坏的实验研究. 物理学报, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [16] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [17] 熊峻江, 高镇同, 刘先斌, 孙训方. 疲劳损伤系统裂尖粒子运动随机分叉理论研究. 物理学报, 2000, 49(1): 49-53. doi: 10.7498/aps.49.49
    [18] 陈祖耀, 唐凯斌, 钱逸泰, 盛正直, 王鲁闽. 新型1223相高Tc超导层型铜氧化物(Tl,M)(Sr,Ba)2Ca2Cu3Oz(M=Cr,V). 物理学报, 1995, 44(5): 795-805. doi: 10.7498/aps.44.795
    [19] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅱ)——初始层解. 物理学报, 1985, 34(1): 77-87. doi: 10.7498/aps.34.77
    [20] 周邦新, 颜鸣皋. 磷对冷轧纯铜再结晶的影响. 物理学报, 1963, 19(10): 633-648. doi: 10.7498/aps.19.633
计量
  • 文章访问数:  5026
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-08-26
  • 刊出日期:  2015-11-05

/

返回文章
返回