搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间域和频率域傅里叶变换F2的光纤模式成分分析

张澍霖 冯国英 周寿桓

引用本文:
Citation:

基于空间域和频率域傅里叶变换F2的光纤模式成分分析

张澍霖, 冯国英, 周寿桓

Fiber modal content analysis based on spatial and spectral Fourier transform

Zhang Shu-Lin, Feng Guo-Ying, Zhou Shou-Huan
PDF
导出引用
  • 针对高功率光纤激光光束质量诊断的需求,提出了双傅里叶变换F2法来测量光纤模式成分,该方法侧重于对光纤输出激光的空间域和时间域的傅里叶变换谱进行测量,得到群时延图,给出模式在空间频谱域的分布,以及各个模式的功率占比. 与已有的S2方法相比,该方法大大减小了对移动平台的移动精度要求,适合于测量高功率光纤激光器输出光的模式成分.
    As is well known, a typical measure of the quality of an optical beam is the M2 parameter, but characterizing the beam quality only by M2 is insufficient. A low value of M2 is generally considered to be equivalent to the single-mode operation with a stable beam. However, even when a large amount of power is contained in high-order modes, the existence of a low value of M2is still possible. Hence, a low value of M2 does not guarantee the single-mode operation. Therefore, a new measurement technique, which aims at measuring modal content of high power fiber laser, is proposed and demonstrated in this paper. This method is named spatial and spectral Fourier transform, or F2 transform in short, and it is based on measuring Fourier transform of both spatial domain and spectral domain of output laser. The experimental set is simple in structure and high in robustness. Another advantage of the method is that it requires no prior detailed knowledge of the fiber properties. In this paper, the patterns of the high-order modes between and after Fourier transform are simulated. From the graph it is evident that the energy of spot diffuses outward and is convenient to measure. We also simulate and compare the group delay difference curve of F2 with existing S2, which are well matched with each other. Experimentally, the high-order modes are stimulated by extruding the fiber periodically, which ensures that we can measure it. Firstly, by scanning two-dimensional (2D) pattern of beam after spatial domain Fourier transform and recording the experimental data, and then through the Fourier transform of data in spectral domain, the group delay differences between the high-order modes and the fundamental mode can be obtained. Finally, different modes in spatial domain are reconstructed and the relative power of every mode is calculated. Additionally, we set up an automatic measuring device to verify the effectiveness of the method. The reconstructed modal patterns are presented in the final section of this paper. We can clearly identify the fundamental mode and the high-order modes, such as LP01, LP02, LP03, LP21, LP11, LP12, LP13 and LP14. It reconfirms that this method is feasible. Compared with the S2 method, this method reduces the requirement for precision of mobile platform greatly and thus it is suited to measure the modal content of high power fiber laser output beam. This technique can be effectively applied to a wide variety of measurements, such as dispersion compensator of large-mode-area fiber, bend loss measurement of the high-order modes, refractive index profiles measurement of fiber and mode convertor fiber.
      通信作者: 冯国英, guoing_feng@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574221)资助的课题.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574221).
    [1]

    Liao S Y, Gong M L {2011 Infrar Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [2]

    Gao L Z {2011 Opt. Commun. Technol. 9 22 (in Chinese) [高林柱 2011 光通信技术 9 22]

    [3]

    Jauregui C, Limpert J, Tnnermann A 2013 Nat. Photon. 7 861

    [4]

    Berdagu S, Facq P 1982 Appl. Opt. 21 1950

    [5]

    Xu M N, Zhou G Y, Chen C, Hou S Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W {2015 Acta Phys. Sin. 64 234206 (in Chinese) [徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 物理学报 64 234206]

    [6]

    Sakuma H, Okamoto A, Shibukawa A, Goto Y, Tomita A 2016 SPIE OPTO Pasadena, CA, February 13-18, 2016 p9774

    [7]

    Siegman A E 1993 SPIE OPTO Stanford, California, February 11-16, 1993 p1868

    [8]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350

    [9]

    Wielandy S 2007 Opt. Eexpress 15 15402

    [10]

    Poole C D, Wiesenfeld J M, Digiovanni D J, Vengsarkar A M 1994 J. Lightwave Technol. 12 1746

    [11]

    Posey R, Phillips L, Diggs D, Sharma A 1996 Opt. Lett. 21 1357

    [12]

    Ramachandran S, Wang Z, Yan M 2002 Opt. Lett. 27 698

    [13]

    Szczepanek P S, Berthold J W 1978 Appl. Opt. 17 3245

    [14]

    Schimpf D, Barankov R, Ramachandran S 2011 Opt. Eexpress 19 13008

    [15]

    Flamm D, Naidoo D, Schulze C, Forbes A, Duparr M 2012 Opt. Lett. 37 2478

    [16]

    Ma Y, Sych Y, Onishchukov G, Ramachandran S, Peschel U, Schmauss B, Leuchs G 2009 Appl. Phys. B 96 345

    [17]

    Nicholson J, Yablon A, Ramachandran S, Ghalmi S 2008 Opt. Eexpress 16 7233

    [18]

    Soldano L B, Pennings E 1995 J. Lightwave Technol 13 615

    [19]

    Wang B, Zhang W, Bai Z, Zhang L, Yan T, Chen L, Zhou Q 2016 Photonics Technol. Lett 28 71

    [20]

    Hu L L, Feng G Y, Dong Z L 2015 Infrar Laser Eng. 44 2517 (in Chinese) [胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]

    [21]

    Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese) [郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208]

  • [1]

    Liao S Y, Gong M L {2011 Infrar Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [2]

    Gao L Z {2011 Opt. Commun. Technol. 9 22 (in Chinese) [高林柱 2011 光通信技术 9 22]

    [3]

    Jauregui C, Limpert J, Tnnermann A 2013 Nat. Photon. 7 861

    [4]

    Berdagu S, Facq P 1982 Appl. Opt. 21 1950

    [5]

    Xu M N, Zhou G Y, Chen C, Hou S Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W {2015 Acta Phys. Sin. 64 234206 (in Chinese) [徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 物理学报 64 234206]

    [6]

    Sakuma H, Okamoto A, Shibukawa A, Goto Y, Tomita A 2016 SPIE OPTO Pasadena, CA, February 13-18, 2016 p9774

    [7]

    Siegman A E 1993 SPIE OPTO Stanford, California, February 11-16, 1993 p1868

    [8]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350

    [9]

    Wielandy S 2007 Opt. Eexpress 15 15402

    [10]

    Poole C D, Wiesenfeld J M, Digiovanni D J, Vengsarkar A M 1994 J. Lightwave Technol. 12 1746

    [11]

    Posey R, Phillips L, Diggs D, Sharma A 1996 Opt. Lett. 21 1357

    [12]

    Ramachandran S, Wang Z, Yan M 2002 Opt. Lett. 27 698

    [13]

    Szczepanek P S, Berthold J W 1978 Appl. Opt. 17 3245

    [14]

    Schimpf D, Barankov R, Ramachandran S 2011 Opt. Eexpress 19 13008

    [15]

    Flamm D, Naidoo D, Schulze C, Forbes A, Duparr M 2012 Opt. Lett. 37 2478

    [16]

    Ma Y, Sych Y, Onishchukov G, Ramachandran S, Peschel U, Schmauss B, Leuchs G 2009 Appl. Phys. B 96 345

    [17]

    Nicholson J, Yablon A, Ramachandran S, Ghalmi S 2008 Opt. Eexpress 16 7233

    [18]

    Soldano L B, Pennings E 1995 J. Lightwave Technol 13 615

    [19]

    Wang B, Zhang W, Bai Z, Zhang L, Yan T, Chen L, Zhou Q 2016 Photonics Technol. Lett 28 71

    [20]

    Hu L L, Feng G Y, Dong Z L 2015 Infrar Laser Eng. 44 2517 (in Chinese) [胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]

    [21]

    Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese) [郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208]

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [3] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [4] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [5] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [6] 李丽君, 马茜, 曹茂永, 宫顺顺, 李文宪, 丁小哲, 刘仪琳, 徐琳, 刘倩. 全光纤干涉式结构中传感模式仿真分析. 物理学报, 2017, 66(22): 220202. doi: 10.7498/aps.66.220202
    [7] 梁井川, 冯国英, 张澍霖, 兰斌, 周寿桓. 高功率光纤中传输光模式与其波长相关性研究. 物理学报, 2017, 66(19): 194202. doi: 10.7498/aps.66.194202
    [8] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [9] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [10] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [11] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [12] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究. 物理学报, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [13] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究. 物理学报, 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [14] 张锦龙, 余重秀, 王葵如, 赵德新, 林妹妹, 李成. 基于偏振干涉的光纤光栅传感解调方法. 物理学报, 2009, 58(6): 3988-3995. doi: 10.7498/aps.58.3988
    [15] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗. 物理学报, 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [16] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [17] 司福祺, 刘建国, 谢品华, 张玉钧, 李 昂, 秦 敏, 李玉金, 窦 科, 李素文, 刘文清. 光纤模式混合器在差分吸收光谱系统中的应用研究. 物理学报, 2007, 56(3): 1825-1830. doi: 10.7498/aps.56.1825
    [18] 雷 亮, 文锦辉, 焦中兴, 寿 倩, 吴 羽, 刘鲁宁, 赖天树, 林位株. 无干涉条纹的光谱位相相干直接电场重构法. 物理学报, 2006, 55(1): 244-248. doi: 10.7498/aps.55.244
    [19] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
    [20] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析. 物理学报, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
计量
  • 文章访问数:  5366
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-05-27
  • 刊出日期:  2016-08-05

/

返回文章
返回