搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁热效应材料的研究进展

郑新奇 沈俊 胡凤霞 孙继荣 沈保根

引用本文:
Citation:

磁热效应材料的研究进展

郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根

Research progress in magnetocaloric effect materials

Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen
PDF
导出引用
  • 磁制冷技术的发展取决于具有大磁热效应磁制冷材料的研发进展.经过长期的工作积累,特别是近20年来的努力,许多新型磁制冷材料的探索和研究极大地促进了磁制冷技术的进步.本文介绍了磁热效应的基本原理和磁制冷研究的发展历史,系统综述了低温区和室温区具有大磁热效应的磁制冷材料的研究进展,重点介绍了一些受到较为关注的磁热效应材料的最新研究成果.低温区磁制冷材料主要包括具有低温相变的二元稀土基金属间化合物(RGa,RNi,RZn,RSi,R3Co以及R12Co7)、稀土-过渡金属-主族金属三元化合物(RTSi,RTAl,RT2Si2,RCo2B2,RCo3B2)以及四元化合物RT2B2C等,其中R代表稀土元素,T代表过渡金属.这些材料一般都具有二级相变,具有良好的热、磁可逆性,也因其合金属性具有良好的导热性.室温区磁制冷材料主要包括Gd-Si-Ge,La-Fe-Si,MnAs基,Mn基Husler合金,Mn基反钙钛矿,Mn-Co-Ge,Fe-Rh以及钙钛矿氧化物等系列.这些材料一般都具有一级相变,多数在室温具有巨大的磁热效应而受到国内外的极大关注.其中,La-Fe-Si系列是国际上普遍认为具有重要应用前景的磁制冷工质之一,也是我国具有自主知识产权的材料.本文还对磁制冷材料的发展方向进行了展望.
    Magnetocaloric effect(MCE) is the intrinsic property of a magnetic material near transition temperature and the magnetic refrigeration based on MCE has been demonstrated as a promising alternative to the conventional gas compression or expansion refrigeration due to its high energy efficiency and environmental friendliness. The development of magnetic refrigeration technology depends on the research progress of magnetic refrigerant materials with large MCEs. Lots of researches of material exploration and material optimization have promoted the progress of magnetic refrigeration technology in recent decades. In this paper, we introduce the basic theory of MCE and the development of refrigeration technology, review the research progress of large MCE materials both in low temperature range and in room temperature range, and specifically focus on the latest progress of some MCE materials. Low temperature MCE materials mainly include those rare earth based materials with low transition temperatures, such as binary alloys(RGa, RNi, RZn, RSi, R3Co and R12Co7), ternary alloys(RTSi, RTAl, RT2Si2, RCo2B2 and RCo3B2), and quaternary alloys(RT2B2C), where R denotes the rare earth and T represents the transition metal. Those materials mainly possess the second-order phase transitions and show good thermal hysteresis, magnetic hysteresis, and thermal conductivities. Room temperature MCE materials are mainly Gd-Si-Ge intermetallic compounds, La-Fe-Si intermetallic compounds, MnAs-based compounds, Mn-based Heusler alloys, Mn-based antiperovskite compounds, Mn-Co-Ge intermetallic compounds, Fe-Rh compounds, and perovskite-type oxides. The above materials usually have the first-order phase transitions and most of these materials possess the large MCEs in room temperature range, therefore they have received much attention home and abroad. Among those room temperature MCE materials, the La-Fe-Si series is considered to be the most promising magnetic refrigerant materials universally and our country has independent intellectual property rights of them. The further development prospects of MCE materials are also discussed at the end of this paper.
      通信作者: 沈俊, jshen@mail.ipc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51322605,51501005,11274357,51271192,51531008,51271196)、中央高校基本科研业务费专项资金(批准号:FRF-TP-15-010A1)和中国博士后科学基金(批准号:2016M591071)资助的课题.
      Corresponding author: Shen Jun, jshen@mail.ipc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 51322605, 51501005, 11274357, 51271192, 51531008, 51271196), the Fundamental Research Funds for the Central Universities, China(Grant No. FRF-TP-15-010A1), and the China Postdoctoral Science Foundation Funded Project(Grant No. 2016M591071).
    [1]

    Warburg E 1881 Ann. Phys. 13 141

    [2]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p398

    [3]

    Casanova F 2003 Ph. D. Dissertation (Barcelona:University of de Barcelona)

    [4]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [5]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p400

    [6]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [8]

    Debye P 1926 Ann. Phys. 81 1154

    [9]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864

    [10]

    Giauque W F, McDougall I P D 1933 Phys. Rev. 43 768

    [11]

    Cooke A H 1949 Proc. Roy. Soc. A 62 269

    [12]

    McMichael R D, Ritter J J, Shull R D 1993 J. Appl. Phys. 73 6946

    [13]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater. 170 223

    [14]

    Shull R D, McMichael R D, Ritter J J 1993 Nanostructure Mater. 2 205

    [15]

    Shull R D 1993 IEEE Trans. Magn. 29 2614

    [16]

    Gschneidner Jr K A, Pecharsky V K, Gailloux M J, Takeya H 1997 Adv. Cryog. Eng. 42 465

    [17]

    Pecharsky V K, Gschneidner Jr K A, Zimm C B 1997 Adv. Cryog. Eng. 42 451

    [18]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 J. Appl. Phys. 84 5677

    [19]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 Adv. Cryog. Eng. 43 1737

    [20]

    Von Ranke P J, Pecharsky V K, Gschneidner Jr K A 1998 Phys. Rev. B 58 12110

    [21]

    Gschneidner Jr K A, Pecharsky V K, Malik S K 1997 Adv. Cryog. Eng. 42 475

    [22]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2009 Appl. Phys. Lett. 95 132504

    [23]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [24]

    Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 102 022421

    [25]

    Zheng X Q, Zhang B, Li Y Q, Wu H, Zhang H, Zhang J Y, Wang S G, Huang Q Z, Shen B G 2016 J. Alloys Compd. 680 617

    [26]

    Shen J, Zhao J L, Hu F X, Wu J F, Sun J R, Shen B G 2010 Chin. Phys. B 19 047502

    [27]

    Zheng X Q 2015 Ph. D. Dissertation (Beijing:University of Chinese Academy of Social Sciences)(in Chinese)[郑新奇2015博士学位论文(北京:中国科学院大学)]

    [28]

    Li L, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R, Zhou S 2015 Appl. Phys. Lett. 107 132401

    [29]

    Brown G V 1971 International Institute of Refrigeration

    [30]

    Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 62 3873

    [31]

    Takeya H, Pecharsky V K, Gschneidner J K A, Moorman J O 1994 Appl. Phys. Lett. 64 2739

    [32]

    Duc N H, Goto T 1999 Handbook on the Physics and Chemistry of Rare Earths (Vol.26)(Amsterdam:North-Holland) p230

    [33]

    Franse J J M, Radwanski R J 1993 Magnetic Properties of Binary Rare Earth 3rd-transition-metal Intermetallic Compounds (Vol. 7)(Amsterdam:North-Holland) p405

    [34]

    Tishin A M, Spichkin Y I 2003 Mater. Today 6 51

    [35]

    Giguere, Foldeaki M, Shcnelle W, Gmelin E 1999 J. Phys.:Condens. Matter 11 6969

    [36]

    Duc N H, Kim Anh D T, Brommer P E 2002 Physica B 319 1

    [37]

    Duc N H, Kim Anh D T 2002 J. Magn. Magn. Mater. 242-245 873

    [38]

    Gomes A M, Reis M S, Oliveira I S, Guimarãs, Takeuchi A Y 2002 J. Magn. Magn. Mater. 242-245 870

    [39]

    Cooke H, Du H J, Wolf W P 1953 Philos. Mag. 44 623

    [40]

    Herrero-Albillos J, Bartolomé F, García L M, Casanova F, Labarta A, Batlle X 2006 Phys. Rev. B 73 134410

    [41]

    Benford S M 1979 J. Appl. Phys. 50 1868

    [42]

    Tishin A M, Jr Gschneidner K A, Pecharsky V K 1999 Phys. Rev. B 59 503

    [43]

    Liu X Y, Barclay J A, Földeàki M, Gopal B R, Chahine R, Bose T K 1997 Adv. Cryog. Eng. 42A 431

    [44]

    Foldeaki M, Chahine R, Gopal B R, Bose T K, Liu X Y, Barclay J A 1998 J. Appl. Phys. 83 2727

    [45]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [46]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [47]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299

    [48]

    Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W, Bohigas X 1996 Appl. Phys. Lett. 69 3596

    [49]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [50]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [51]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460

    [52]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Zhang X X 2000 J. Phys.:Condens. Matter 12 L691

    [53]

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Appl. Phys. Lett. 80 826

    [54]

    Hu F X, Shen B G, Sun J R 2001 Phys. Rev. B 64 012409

    [55]

    Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R 2002 Chin. Phys. 11 741

    [56]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [57]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853

    [58]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [59]

    Recarte V, Pérez-Landazábal J I, Gómez-Polo C, Cesari E, Dutkiewicz J 2006 Appl. Phys. Lett. 88 132503

    [60]

    Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y, Guimarães A P 2006 Appl. Phys. Lett. 88 192511

    [61]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [62]

    Jr Gschneidner K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [63]

    Barclay J A, Overton Jr W C, Zimm C B 1984 Proceedings of the 17th International Conference on Low Temperature Physics 151 p157

    [64]

    Hashimoto T, Matsumoto K, Kurihara T, Numuzawa T, Tomokiyo A, Yayama H, Goto T, Todo S, Sahashi M 1986 Adv. Cryog. Eng. 32 279

    [65]

    Hashimoto T, Kurihara T, Matsumoto K, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 26 1673

    [66]

    Gschneidner Jr K A, Takeya H M, Pecharsky V K, Malik S K, Zimm C B 1994 Adv. Cryog. Eng. 39 1457

    [67]

    Zhang X X, Wang F W, Wen G H 2001 J. Phys.:Condens. Matter 13 L747

    [68]

    Tomokiyo A, Yayama H, Wakabayashi H, Kuzuhara T, Hashimoto T, Sahashi M, Inomata A 1986 Adv. Cryog. Eng. 32 295

    [69]

    Wada H, Tomekawa S, Shiga M 1999 Cryogenics 39 915

    [70]

    Wada H, Tanabe Y, Shiga M, Sugawara H, Sato H 2001 J. Alloys Compd. 316 245

    [71]

    Zhang J Y, Luo J, Li J B, Liang J K, Wang Y C, Ji L N, Liu Y H, Rao G H 2009 J. Alloys Compd. 469 15

    [72]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 157

    [73]

    Zheng X Q, Chen J, Shen J, Zhang H, Xu Z Y, Gao W W, Wu J F, Hu F X, Sun J R, Shen B G 2012 J. Appl. Phys. 111 07A917

    [74]

    Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A905

    [75]

    Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A938

    [76]

    Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z, Shen B G 2015 Sci. Rep. 5 14970

    [77]

    Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W, Sun J R 2009 J. Appl. Phys. 105 113902

    [78]

    Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W, Sun J R 2009 Solid State Commun. 149 417

    [79]

    Dong Q Y, Shen B G, Chen J, Shen J, Sun J R 2011 Solid State Commun. 151 112

    [80]

    Dong Q Y, ChenJ, Shen J Sun J R, Shen B G 2012 J. Magn. Magn. Mater. 324 2676

    [81]

    Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [82]

    Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 J. Appl. Phys. 114 163915

    [83]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [84]

    Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 103 202412

    [85]

    Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 063901

    [86]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501

    [87]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [88]

    Li L, Niehaus O, Johnscher M, Pottgen R 2015 Intermetallics 60 9

    [89]

    Li B, Du J, Ren W J, Hu W J, Zhang Q, Li D, Zhang Z D 2008 Appl. Phys. Lett. 92 242504

    [90]

    Shen J, Zhao J L, Hu F X, Rao G H, Liu G Y, Wu J F, Li Y X, Sun J R, Shen B G 2010 Appl. Phys. A 99 853

    [91]

    Shen J, Wu J F 2011 J. Appl. Phys. 109 07A931

    [92]

    Kumar P, Singh N K, Nayak A K, Haldar A, Suresh K G, Nigam A K 2010 J. Appl. Phys. 107 09A932

    [93]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Appl. Phys. 113 033908

    [94]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Alloys Compd. 572 1

    [95]

    Wang L C, Shen B G 2014 Rare Met. 33 239

    [96]

    Li L, Nishimura K 2009 Appl. Phys. Lett. 95 132505

    [97]

    Li L, Nishimura K, Kadonaga M, Qian Z, Huo D 2011 J. Appl. Phys. 110 043912

    [98]

    Zhang Y, Yang B 2014 J. Alloys Compd. 610 540

    [99]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

  • [1]

    Warburg E 1881 Ann. Phys. 13 141

    [2]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p398

    [3]

    Casanova F 2003 Ph. D. Dissertation (Barcelona:University of de Barcelona)

    [4]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [5]

    Tishin A M 1999 Magnetocaloric Effect in the Vicinity of Phase Transitions (Vol. 12)(Amsterdam:North-Holland) p400

    [6]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [7]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [8]

    Debye P 1926 Ann. Phys. 81 1154

    [9]

    Giauque W F 1927 J. Am. Chem. Soc. 49 1864

    [10]

    Giauque W F, McDougall I P D 1933 Phys. Rev. 43 768

    [11]

    Cooke A H 1949 Proc. Roy. Soc. A 62 269

    [12]

    McMichael R D, Ritter J J, Shull R D 1993 J. Appl. Phys. 73 6946

    [13]

    Levitin R Z, Snegirev V V, Kopylov A V, Lagutin A S, Gerber A 1997 J. Magn. Magn. Mater. 170 223

    [14]

    Shull R D, McMichael R D, Ritter J J 1993 Nanostructure Mater. 2 205

    [15]

    Shull R D 1993 IEEE Trans. Magn. 29 2614

    [16]

    Gschneidner Jr K A, Pecharsky V K, Gailloux M J, Takeya H 1997 Adv. Cryog. Eng. 42 465

    [17]

    Pecharsky V K, Gschneidner Jr K A, Zimm C B 1997 Adv. Cryog. Eng. 42 451

    [18]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 J. Appl. Phys. 84 5677

    [19]

    Korte B J, Pecharsky V K, Gschneidner Jr K A 1998 Adv. Cryog. Eng. 43 1737

    [20]

    Von Ranke P J, Pecharsky V K, Gschneidner Jr K A 1998 Phys. Rev. B 58 12110

    [21]

    Gschneidner Jr K A, Pecharsky V K, Malik S K 1997 Adv. Cryog. Eng. 42 475

    [22]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2009 Appl. Phys. Lett. 95 132504

    [23]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [24]

    Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 102 022421

    [25]

    Zheng X Q, Zhang B, Li Y Q, Wu H, Zhang H, Zhang J Y, Wang S G, Huang Q Z, Shen B G 2016 J. Alloys Compd. 680 617

    [26]

    Shen J, Zhao J L, Hu F X, Wu J F, Sun J R, Shen B G 2010 Chin. Phys. B 19 047502

    [27]

    Zheng X Q 2015 Ph. D. Dissertation (Beijing:University of Chinese Academy of Social Sciences)(in Chinese)[郑新奇2015博士学位论文(北京:中国科学院大学)]

    [28]

    Li L, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R, Zhou S 2015 Appl. Phys. Lett. 107 132401

    [29]

    Brown G V 1971 International Institute of Refrigeration

    [30]

    Hashimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 62 3873

    [31]

    Takeya H, Pecharsky V K, Gschneidner J K A, Moorman J O 1994 Appl. Phys. Lett. 64 2739

    [32]

    Duc N H, Goto T 1999 Handbook on the Physics and Chemistry of Rare Earths (Vol.26)(Amsterdam:North-Holland) p230

    [33]

    Franse J J M, Radwanski R J 1993 Magnetic Properties of Binary Rare Earth 3rd-transition-metal Intermetallic Compounds (Vol. 7)(Amsterdam:North-Holland) p405

    [34]

    Tishin A M, Spichkin Y I 2003 Mater. Today 6 51

    [35]

    Giguere, Foldeaki M, Shcnelle W, Gmelin E 1999 J. Phys.:Condens. Matter 11 6969

    [36]

    Duc N H, Kim Anh D T, Brommer P E 2002 Physica B 319 1

    [37]

    Duc N H, Kim Anh D T 2002 J. Magn. Magn. Mater. 242-245 873

    [38]

    Gomes A M, Reis M S, Oliveira I S, Guimarãs, Takeuchi A Y 2002 J. Magn. Magn. Mater. 242-245 870

    [39]

    Cooke H, Du H J, Wolf W P 1953 Philos. Mag. 44 623

    [40]

    Herrero-Albillos J, Bartolomé F, García L M, Casanova F, Labarta A, Batlle X 2006 Phys. Rev. B 73 134410

    [41]

    Benford S M 1979 J. Appl. Phys. 50 1868

    [42]

    Tishin A M, Jr Gschneidner K A, Pecharsky V K 1999 Phys. Rev. B 59 503

    [43]

    Liu X Y, Barclay J A, Földeàki M, Gopal B R, Chahine R, Bose T K 1997 Adv. Cryog. Eng. 42A 431

    [44]

    Foldeaki M, Chahine R, Gopal B R, Bose T K, Liu X Y, Barclay J A 1998 J. Appl. Phys. 83 2727

    [45]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [46]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [47]

    Pecharsky V K, Gschneidner Jr K A 1997 Appl. Phys. Lett. 70 3299

    [48]

    Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W, Bohigas X 1996 Appl. Phys. Lett. 69 3596

    [49]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [50]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [51]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460

    [52]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Zhang X X 2000 J. Phys.:Condens. Matter 12 L691

    [53]

    Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Appl. Phys. Lett. 80 826

    [54]

    Hu F X, Shen B G, Sun J R 2001 Phys. Rev. B 64 012409

    [55]

    Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R 2002 Chin. Phys. 11 741

    [56]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302

    [57]

    Provenzano V, Shapiro A J, Shull R D 2004 Nature 429 853

    [58]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [59]

    Recarte V, Pérez-Landazábal J I, Gómez-Polo C, Cesari E, Dutkiewicz J 2006 Appl. Phys. Lett. 88 132503

    [60]

    Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y, Guimarães A P 2006 Appl. Phys. Lett. 88 192511

    [61]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [62]

    Jr Gschneidner K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [63]

    Barclay J A, Overton Jr W C, Zimm C B 1984 Proceedings of the 17th International Conference on Low Temperature Physics 151 p157

    [64]

    Hashimoto T, Matsumoto K, Kurihara T, Numuzawa T, Tomokiyo A, Yayama H, Goto T, Todo S, Sahashi M 1986 Adv. Cryog. Eng. 32 279

    [65]

    Hashimoto T, Kurihara T, Matsumoto K, Sahashi M, Inomata K, Tomokiyo A, Yayama H 1987 J. Appl. Phys. 26 1673

    [66]

    Gschneidner Jr K A, Takeya H M, Pecharsky V K, Malik S K, Zimm C B 1994 Adv. Cryog. Eng. 39 1457

    [67]

    Zhang X X, Wang F W, Wen G H 2001 J. Phys.:Condens. Matter 13 L747

    [68]

    Tomokiyo A, Yayama H, Wakabayashi H, Kuzuhara T, Hashimoto T, Sahashi M, Inomata A 1986 Adv. Cryog. Eng. 32 295

    [69]

    Wada H, Tomekawa S, Shiga M 1999 Cryogenics 39 915

    [70]

    Wada H, Tanabe Y, Shiga M, Sugawara H, Sato H 2001 J. Alloys Compd. 316 245

    [71]

    Zhang J Y, Luo J, Li J B, Liang J K, Wang Y C, Ji L N, Liu Y H, Rao G H 2009 J. Alloys Compd. 469 15

    [72]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 157

    [73]

    Zheng X Q, Chen J, Shen J, Zhang H, Xu Z Y, Gao W W, Wu J F, Hu F X, Sun J R, Shen B G 2012 J. Appl. Phys. 111 07A917

    [74]

    Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A905

    [75]

    Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17A938

    [76]

    Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z, Shen B G 2015 Sci. Rep. 5 14970

    [77]

    Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W, Sun J R 2009 J. Appl. Phys. 105 113902

    [78]

    Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W, Sun J R 2009 Solid State Commun. 149 417

    [79]

    Dong Q Y, Shen B G, Chen J, Shen J, Sun J R 2011 Solid State Commun. 151 112

    [80]

    Dong Q Y, ChenJ, Shen J Sun J R, Shen B G 2012 J. Magn. Magn. Mater. 324 2676

    [81]

    Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [82]

    Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R, Shen B G 2013 J. Appl. Phys. 114 163915

    [83]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [84]

    Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 103 202412

    [85]

    Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R, Shen B G 2014 J. Appl. Phys. 115 063901

    [86]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501

    [87]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [88]

    Li L, Niehaus O, Johnscher M, Pottgen R 2015 Intermetallics 60 9

    [89]

    Li B, Du J, Ren W J, Hu W J, Zhang Q, Li D, Zhang Z D 2008 Appl. Phys. Lett. 92 242504

    [90]

    Shen J, Zhao J L, Hu F X, Rao G H, Liu G Y, Wu J F, Li Y X, Sun J R, Shen B G 2010 Appl. Phys. A 99 853

    [91]

    Shen J, Wu J F 2011 J. Appl. Phys. 109 07A931

    [92]

    Kumar P, Singh N K, Nayak A K, Haldar A, Suresh K G, Nigam A K 2010 J. Appl. Phys. 107 09A932

    [93]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Appl. Phys. 113 033908

    [94]

    Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C, Shen B G 2013 J. Alloys Compd. 572 1

    [95]

    Wang L C, Shen B G 2014 Rare Met. 33 239

    [96]

    Li L, Nishimura K 2009 Appl. Phys. Lett. 95 132505

    [97]

    Li L, Nishimura K, Kadonaga M, Qian Z, Huo D 2011 J. Appl. Phys. 110 043912

    [98]

    Zhang Y, Yang B 2014 J. Alloys Compd. 610 540

    [99]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

计量
  • 文章访问数:  44097
  • PDF下载量:  1578
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2016-08-02
  • 刊出日期:  2016-11-05

磁热效应材料的研究进展

  • 1. 北京科技大学材料科学与工程学院, 北京 100083;
  • 2. 中国科学院理化技术研究所, 北京 100190;
  • 3. 中国科学院物理研究所, 中国科学院大学, 北京 100190
  • 通信作者: 沈俊, jshen@mail.ipc.ac.cn
    基金项目: 国家自然科学基金(批准号:51322605,51501005,11274357,51271192,51531008,51271196)、中央高校基本科研业务费专项资金(批准号:FRF-TP-15-010A1)和中国博士后科学基金(批准号:2016M591071)资助的课题.

摘要: 磁制冷技术的发展取决于具有大磁热效应磁制冷材料的研发进展.经过长期的工作积累,特别是近20年来的努力,许多新型磁制冷材料的探索和研究极大地促进了磁制冷技术的进步.本文介绍了磁热效应的基本原理和磁制冷研究的发展历史,系统综述了低温区和室温区具有大磁热效应的磁制冷材料的研究进展,重点介绍了一些受到较为关注的磁热效应材料的最新研究成果.低温区磁制冷材料主要包括具有低温相变的二元稀土基金属间化合物(RGa,RNi,RZn,RSi,R3Co以及R12Co7)、稀土-过渡金属-主族金属三元化合物(RTSi,RTAl,RT2Si2,RCo2B2,RCo3B2)以及四元化合物RT2B2C等,其中R代表稀土元素,T代表过渡金属.这些材料一般都具有二级相变,具有良好的热、磁可逆性,也因其合金属性具有良好的导热性.室温区磁制冷材料主要包括Gd-Si-Ge,La-Fe-Si,MnAs基,Mn基Husler合金,Mn基反钙钛矿,Mn-Co-Ge,Fe-Rh以及钙钛矿氧化物等系列.这些材料一般都具有一级相变,多数在室温具有巨大的磁热效应而受到国内外的极大关注.其中,La-Fe-Si系列是国际上普遍认为具有重要应用前景的磁制冷工质之一,也是我国具有自主知识产权的材料.本文还对磁制冷材料的发展方向进行了展望.

English Abstract

参考文献 (99)

目录

    /

    返回文章
    返回