搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子在外层导电屏蔽的玻璃锥管中的传输

钱立冰 李鹏飞 靳博 靳定坤 宋光银 张琦 魏龙 牛犇 万成亮 周春林 Arnold Milenko Müller Max Dobeli 宋张勇 杨治虎 Reinhold Schuch 张红强 陈熙萌

引用本文:
Citation:

低能电子在外层导电屏蔽的玻璃锥管中的传输

钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌

Transmission of electrons through the conical glass capillary with the grounded conducting outer surface

Qian Li-Bing, Li Peng-Fei, Jin Bo, Jin Ding-Kun, Song Guang-Yin, Zhang Qi, Wei Long, Niu Ben, Wan Cheng-Liang, Zhou Chun-Lin, Arnold Milenko Müller, Max Dobeli, Song Zhang-Yong, Yang Zhi-Hu, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng
PDF
导出引用
  • 采用新的具有常数锥角的玻璃锥管,并对玻璃锥管进行了外表面导电屏蔽,通过对电子穿越玻璃锥管的二维角分布随时间演化的观测,研究了低能电子与玻璃管相互作用的机制.发现电子穿越完全放电的玻璃锥管时穿透率先下降后平稳,整个过程中角分布中心发生微小移动,但角分布的半高宽几乎保持不变.这与我们之前发表的工作(2016 Acta Phys.Sin. 65 204103)不同,这是由于对玻璃锥管进行外表面导电屏蔽会阻止外界不确定的快速充放电的影响,并形成了新的稳定放电通道,有利于实现电子的稳定穿透.电子的穿透率随倾角呈类似矩形的分布,透射电子的角分布中心伴随倾角的变化而移动,其穿透所容许的倾角与几何穿透一致.
    The transmission of 1.5 keV-electrons through a conical glass capillary is reported. This study aims to understand the so-called guiding effect for the negatively charged particles (e.g. electrons). The guiding mechanism is understood quite well with positively charged particles in particular highly charged ions, but not clear with electrons, i.e., even the basic scheme mediated by the existence of negative charge patches to guide the electrons is still somewhat controversial. The study of the charging-up dynamics causing the electrons transport inside the capillary will shed light on this issue. In order to perform this, a data acquisition system has been setup to follow the time evolution of the twodimensional angular distribution of the transmitted electrons. The electrons are detected by the multi-channel plate (MCP) detector with a phosphor screen. The image from the phosphor screen is recorded by a charge-coupled device camera. The timing signals for the detected events are extracted from the back stack of the MCP detector and recorded by the data acquisition system, synchronized with the acquired images. The electron beam has a size of 0.5 mm0.5 mm and a divergence of less than 0.35. The inner diameter of the straight part of the capillary is 1.2 mm and the exit diameter is 225 m. A small conducting aperture of 0.3 mm in diameter is placed at the entrance of the capillary. Two-dimensional angular distribution of the transmitted electrons through conical glass capillary and its time evolution are measured. The results show that the transmission rate decreases and reaches to a constant value for the completely discharged glass capillary with time going by. The centroid of the angular distribution moves to an asymptotic value while the width remains unchanged. These transmission characteristics are different from those indicated in our previous work (2016 Acta Phys. Sin. 65 204103). The difference originates from the different manipulations of the capillary outer surface. A conducting layer is coated on the outer surface of the capillary and grounded in this work. This isolates various discharge/charge channels and forms a new stable discharge channel. The transmission rate as a function of the tilt angle shows that the allowed transmission occurs at the tilt angle limited by the geometrical factors, i.e., the geometrical opening angle given by the aspect ratio as well as the beam divergence. The transmission characteristics suggest that most likely there are formed no negative patches to facilitate the electron transmission through the glass capillary at this selected beam energy. It is different from that of highly charged ions, where the formation of the charge patches prohibits the close collisions between the following ions and guides them out of the capillary.
      通信作者: 张红强, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn ; 陈熙萌, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475075)资助的课题.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn ; Chen Xi-Meng, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475075).
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [7]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105

    [8]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [9]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701

    [10]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901

    [12]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901

    [13]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901

    [14]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145

    [15]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [16]

    Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201

    [17]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [18]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [19]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]

    [20]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 物理学报 59 222]

    [21]

    Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [22]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1

    [23]

    ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701

    [24]

    Varialee V 2015 Phys. Procedia 66 242

    [25]

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103]

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [7]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105

    [8]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [9]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701

    [10]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901

    [12]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901

    [13]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901

    [14]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145

    [15]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [16]

    Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201

    [17]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [18]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [19]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]

    [20]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 物理学报 59 222]

    [21]

    Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [22]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1

    [23]

    ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701

    [24]

    Varialee V 2015 Phys. Procedia 66 242

    [25]

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103]

  • [1] 牛书通, 詹欣, 华强, 李文腾, 周利华, 杨廷贵. 16 keV C离子在锥形玻璃管中的输运过程. 物理学报, 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [2] 袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计. 物理学报, 2023, 72(3): 034203. doi: 10.7498/aps.72.20221917
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [5] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学. 物理学报, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [6] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌. 低能电子穿越玻璃直管和锥管动力学研究. 物理学报, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [8] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾. 黑体辐射法测量电介质内部被超短激光脉冲加工后的温度. 物理学报, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [9] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [10] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [11] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响. 物理学报, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [12] 张涛. 光与电子之间能量交换的一个诱因. 物理学报, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [13] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [14] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [15] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [16] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响. 物理学报, 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [17] 程兴奎, 周均铭, 黄绮. 超晶格结构中电子的波动性. 物理学报, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [18] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
    [19] 童国平. 导电高聚物中电子转移积分计算. 物理学报, 1994, 43(8): 1326-1330. doi: 10.7498/aps.43.1326
    [20] 任燕如. 用具有磁反馈的de Haas-van Alphen效应研究铅传导电子的轨道自旋劈裂因子. 物理学报, 1989, 38(10): 1559-1568. doi: 10.7498/aps.38.1559
计量
  • 文章访问数:  4425
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-09
  • 修回日期:  2017-03-13
  • 刊出日期:  2017-06-05

/

返回文章
返回