搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六角星形MoSe2双层纳米片的制备及其光致发光性能

黄静雯 罗利琼 金波 楚士晋 彭汝芳

引用本文:
Citation:

六角星形MoSe2双层纳米片的制备及其光致发光性能

黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳

Synthesis and photoluminescence property of hexangular star MoSe2 bilayer

Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang
PDF
导出引用
  • 采用化学气相沉积法,以三氧化钼作为钼源,硒粉作为硒源,在H2/Ar气氛下生长出硒化钼纳米片.扫描电镜、X射线衍射表征结果表明,MoSe2产物呈六角星状,横向尺寸约10 μm,具有很好的晶体质量和结构.拉曼光谱表征其结构,确定其为双层纳米片.研究表明,高温反应时间对双层纳米片的生长具有重要的影响.通过对双层纳米片的生长机理的探究,推测其经历了3个生长过程:在高温下,Mo源和Se源被气化成气态分子并发生硒化反应形成晶核;晶核呈三角形外延生长;当反应时间持续增加,在空间位阻效应的影响下,晶体以中心原子岛为核,外延耦合生长出第二层三角形,最终形成六角星状双层纳米片.光致发光光谱结果表明,六角星状MoSe2双层纳米片在1.53 eV处具有直接带隙和1.78 eV处具有间接带隙,其较宽范围的激发光谱响应预测其在光电探测器件领域具有潜在的应用前景.
    Transition metal dichalcogenides (TMDs) have received widespread attention because of their excellent performances in the field of optoelectronic, nanoelectronic device and photocatalytic exploration. The structures of TMDs can be expressed by the MX2, M=Mo, W; X=S, Se, Te, etc. As a typical TMD, MoSe2 has a graphene-like two-dimensional periodic structure with perfect physical, photoelcrtonic and catalytic properties. Currently, there are various methods to prepare the nanolevel MoSe2, such as the mechanical exfoliation, physical vapor deposition (PVD), hydrothermal method, chemical vapor deposition (CVD), etc, and most studies focused on regular triangular morphologies of the surfaces of different substrates. The new morphology, such as the hexangular star bilayer, has not been systematically investigated. In this study, the hexangular star MoSe2 nanosheets are successfully synthesized by using a simple CVD method in an atmosphere of mixed H2/Ar with a flow rate ratio of 1:4. Molybdenum trioxide(MoO3) and selenium (Se) powders are chosen to be the Mo and Se source, respectively. Moreover, the structure of the obtained MoSe2 nanosheet is characterized by Raman, SEM, EDS, XRD and TEM. The results of Raman spectrum and SEM indicate that the hexangular star MoSe2 possesses a bilayer structure. The TEM characterization reveals that the MoSe2 is a single crystal with a hexagonal lattice structure and good quality. The heating time at high temperature has a remarkable influence on the MoSe2 bilayer growth process. The growth process of the hexangular star MoSe2 bilayer is inferred to experience a three-step process. First, Mo and Se sources are gasified into gaseous molecules and then the Mo molecules are selenized into the MoSe2 crystal nucleus under high temperature. Next, these crystal nucleus are in a triangular epitaxial growth under the action of carrier gas. As heating time increases, the space steric effect leads to different interlayer separations between the two MoSe2 layers in various stacking configurations, eventually forming a hexangular star bilayer. The PL result shows that the spectra split into two main emission peaks, i.e., the direct and indirect bandgaps of the hexangular star structure appearing at 1.53 eV (810.2 nm) and 1.78 eV (696.9 nm), respectively. It might be due to the spin-orbit coupling interaction between the double MoSe2 molecules. The wide spectral range of the MoSe2 bilayer indicates that it has a potencial application in the photoelectric detectors.
      通信作者: 彭汝芳, rfpeng2006@163.com
    • 基金项目: 国家自然科学基金(批准号:51327804)和西南科技大学团队基金项目(批准号:14tdfk05)资助的课题.
      Corresponding author: Peng Ru-Fang, rfpeng2006@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51327804) and Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional,China (Grant No.14tdfk05).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Lin J, Zhong J Q, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109

    [3]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [4]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [5]

    Ji Q Q, Zhang Y, Zhang Y F, Liu Z F 2015 Chem. Soc. Rev. 44 2587

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101 (in Chinese)[董艳芳, 何大伟, 王永生, 徐海涛, 巩哲 2016 物理学报 65 128101]

    [7]

    Wang B B, Zhu K, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [8]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396

    [9]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [10]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104

    [11]

    Ullah F, Nguyen T K, Le C T, Kim Y S 2016 CrystEngComm 18 6992

    [12]

    Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S 2016 Appl. Surf. Sci. 379 296

    [13]

    Chen Z X, Liu H Q, Chen X C, Chu G, Chu S, Zhang H 2016 ACS Appl. Mater. Interfaces 8 20267

    [14]

    Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E B, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [15]

    Shaw J C, Zhou H L, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X F 2014 Nano Res. 7 511

    [16]

    Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T S, Li H N, Wu C, Chang W H, Wee A T S, Li L J 2014 ACS Nano 8 8582

    [17]

    Liu H Q, Chen Z X, Chen X C, Chu S, Huang J W, Peng R F 2016 J. Mater. Chem. 4 9399

    [18]

    Huang J, Yang L, Liu D, Chen J J, Fu Q, Xiong Y J, Lin F, Xiang B 2015 Nanoscale 7 4193

    [19]

    Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis S, Bratschiitsch R 2013 Opt. Express 21 4908

    [20]

    Coehoorn R, Haas C, Dijkstra J, Flipse C J F, Groot R A D 1987 Phys. Rev. B 35 6195

    [21]

    Bissessur R, Xu H 2009 Mat. Chem. Phys. 117 335

    [22]

    Zha L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 018710 (in Chinese)[张理勇, 方粮, 彭向阳 2015 物理学报 64 018710]

    [23]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [24]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [25]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 13

    [26]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X L, Zhou W, Yu T, Qiu C Y, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z H, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246

  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Lin J, Zhong J Q, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109

    [3]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [4]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [5]

    Ji Q Q, Zhang Y, Zhang Y F, Liu Z F 2015 Chem. Soc. Rev. 44 2587

    [6]

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101 (in Chinese)[董艳芳, 何大伟, 王永生, 徐海涛, 巩哲 2016 物理学报 65 128101]

    [7]

    Wang B B, Zhu K, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [8]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396

    [9]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [10]

    Larentis S, Fallahazad B, Tutuc E 2012 Appl. Phys. Lett. 101 223104

    [11]

    Ullah F, Nguyen T K, Le C T, Kim Y S 2016 CrystEngComm 18 6992

    [12]

    Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S 2016 Appl. Surf. Sci. 379 296

    [13]

    Chen Z X, Liu H Q, Chen X C, Chu G, Chu S, Zhang H 2016 ACS Appl. Mater. Interfaces 8 20267

    [14]

    Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E B, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [15]

    Shaw J C, Zhou H L, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X F 2014 Nano Res. 7 511

    [16]

    Chang Y H, Zhang W J, Zhu Y H, Han Y, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T S, Li H N, Wu C, Chang W H, Wee A T S, Li L J 2014 ACS Nano 8 8582

    [17]

    Liu H Q, Chen Z X, Chen X C, Chu S, Huang J W, Peng R F 2016 J. Mater. Chem. 4 9399

    [18]

    Huang J, Yang L, Liu D, Chen J J, Fu Q, Xiong Y J, Lin F, Xiang B 2015 Nanoscale 7 4193

    [19]

    Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis S, Bratschiitsch R 2013 Opt. Express 21 4908

    [20]

    Coehoorn R, Haas C, Dijkstra J, Flipse C J F, Groot R A D 1987 Phys. Rev. B 35 6195

    [21]

    Bissessur R, Xu H 2009 Mat. Chem. Phys. 117 335

    [22]

    Zha L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 018710 (in Chinese)[张理勇, 方粮, 彭向阳 2015 物理学报 64 018710]

    [23]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [24]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576

    [25]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 13

    [26]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X L, Zhou W, Yu T, Qiu C Y, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z H, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246

  • [1] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能. 物理学报, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [2] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能. 物理学报, 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [3] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [4] 王文杰, 康智林, 宋茜, 王鑫, 邓加军, 丁迅雷, 车剑滔. 层数变化对堆叠生长的MoS2(1-x) Se2x电子结构的影响. 物理学报, 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [5] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [6] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [7] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春. ZnO纳米花的制备及其性能. 物理学报, 2015, 64(20): 207802. doi: 10.7498/aps.64.207802
    [8] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [9] 路芳, 张兴华, 卢遵铭, 徐学文, 唐成春. Sr和Ba替代对Eu掺杂Ca2.955Si2O7的结构和发光特性的影响研究. 物理学报, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [10] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [11] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [12] 吴小丽, 陈长乐, 韩立安, 罗炳成, 高国棉, 朱建华. 衬底温度对PLD法生长的Mg0.05Zn0.95O薄膜结构和发光特性的影响. 物理学报, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [13] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [14] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [15] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [17] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [19] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [20] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
计量
  • 文章访问数:  6106
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-05-08
  • 刊出日期:  2017-07-05

/

返回文章
返回