搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒样品形变对声波传播影响的实验探究

周志刚 宗谨 王文广 厚美瑛

引用本文:
Citation:

颗粒样品形变对声波传播影响的实验探究

周志刚, 宗谨, 王文广, 厚美瑛

Experimental study on the influence of granular shear deformation on sound propagation

Zhou Zhi-Gang, Zong Jin, Wang Wen-Guang, Hou Mei-Ying
PDF
导出引用
  • 为了更好地理解颗粒间接触结构的变化对通过颗粒介质中的声波的影响,本文利用单轴压缩实验,通过一系列增加的轴向压力使样品塑性应变不断增大,这在颗粒尺度上对应于颗粒间接触结构的改变.我们测量了此过程中通过颗粒样品的声波变化,结果表明颗粒体系内接触结构的变化对声波波形中的非相干波部分和频率有明显的影响,并且在样品接触结构变化的初始阶段声速是偏离有效介质理论的预测的.
    Effective medium theory (EMT) predicts a scaling relation between sound velocity c and pressure P as c (Z)1/3 (P/E0)1/6, where and Z are respectively the packing fraction and the mean coordination number of granular material. In this relation, the granular contact network is represented via two simple parameters and Z stemming theoretically from a strong approximation that microscopic and macroscopic granular displacements remain affine. This hypothesis simplifies tremendous computations for sound wave in a granular system, however some experimental results show that the scaling relation is recovered only for the case of very high pressure confinement (larger than 106 Pa for a glass bead system), but for the lower pressure case (less than 106 Pa) the relation does not hold. Owing to the fact that the change of microscopic granular displacement relates to the contact network variation of granular sample, and for better understanding the effect of the variation of contact network on the sound propagation in granular system, we conduct uniaxial shear experiments, in which the granular solid sample, composed of 0.28-0.44 mm glass beads, is cyclically compressed under a series of axial loadings (denoted as Pcomp). After these axial loadings, different contact networks of the sample are formed. Ultrasonic waves are then measured in the granular sample with these different contact networks under a constant axial pressure (denoted as Pobse). It is found that the axial deformation of the granular sample apparently affects the incoherent part of ultrasonic wave, but not the coherent part. A resemblant parameter is introduced to quantitatively discuss the variations of incoherent parts of sound waves in different axial deformations. In this paper, we also compare the frequency and the energy spectra of the sound waves, and find that the tendencies of their varying with the increase of axial deformation are nearly the same. This indicates that during the sound wave propagation in the granular solid sample, the processes of wave scattering and dissipation on particle contacted occur at the same time and the energy dissipation of sound wave in the air among particles can be neglected. In our experiments, compressional wave velocities based on time-of-flight method are also explored. The experimental results show that the velocity increases rapidly at the beginning of the axial deformation, and then tends to a steady value which is predicted by EMT. These illuminate that the variation of contact networks of granular sample may contribute to the deviation of velocity-pressure exponent from the prediction of EMT in low confining pressure.
      通信作者: 厚美瑛, mayhou@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11274354,11474326)和中国科学院空间科学战略性先导科技专项(批准号:XDA04020200)资助的课题.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274354,11474326) and the Chinese Academy of Sciences Strategic Priority Research Program-SJ-10 (Grant No.XDA04020200).
    [1]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [2]

    Jacco H S, Thijs J H V, van Martin H, van Wim S 2004 Phys. Rev. Lett. 92 054302

    [3]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [4]

    Makse H A, Gland N, Johnson D L, Schwartz L M 1999 Phys. Rev. Lett. 83 5070

    [5]

    Tournat V, Gusev V E 2009 Phys. Rev. E 80 011306

    [6]

    Jia X, Brunet Th, Laurent J 2011 Phys. Rev. E 84 020301

    [7]

    Caroli C, Velick B 2003 Phys. Rev. E 67 061301

    [8]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [9]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [10]

    Domentico S N 1977 Geophysics 42 1339

    [11]

    Yin H 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [12]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [13]

    Jia X, Caroli C, Velick B 1999 Phys. Rev. Lett. 82 1863

    [14]

    Owens E T, Daniels K E 2011 Eur. Phys. Lett. 94 54005

    [15]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [16]

    Yacine K, Jia X P 2010 Phys. Rev. E 81 021303

    [17]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [18]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [19]

    Nicolas V, Giammarinaro B, Derode A, Barrire C 2013 Phys. Rev. E 88 023201

    [20]

    Makse H A, Gland N, Johnson D L, Schwartz L M, Schwartz L 2004 Phys. Rev. E. 70 061302

    [21]

    Vitelli V 2010 Soft Matter 6 3007

    [22]

    Walton K 1987 J. Mech. Phys. Solids 35 213

    [23]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [24]

    Gilles B, Coste C 2003 Phys. Rev. Lett. 90 174302

    [25]

    Goddard J D 1990 Proc. R. Soc. Lond. Ser. A 430 105

  • [1]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [2]

    Jacco H S, Thijs J H V, van Martin H, van Wim S 2004 Phys. Rev. Lett. 92 054302

    [3]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [4]

    Makse H A, Gland N, Johnson D L, Schwartz L M 1999 Phys. Rev. Lett. 83 5070

    [5]

    Tournat V, Gusev V E 2009 Phys. Rev. E 80 011306

    [6]

    Jia X, Brunet Th, Laurent J 2011 Phys. Rev. E 84 020301

    [7]

    Caroli C, Velick B 2003 Phys. Rev. E 67 061301

    [8]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [9]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [10]

    Domentico S N 1977 Geophysics 42 1339

    [11]

    Yin H 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [12]

    Majmudar T S, Sperl M, Luding S, Behringer R P 2007 Phys. Rev. Lett. 98 058001

    [13]

    Jia X, Caroli C, Velick B 1999 Phys. Rev. Lett. 82 1863

    [14]

    Owens E T, Daniels K E 2011 Eur. Phys. Lett. 94 54005

    [15]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [16]

    Yacine K, Jia X P 2010 Phys. Rev. E 81 021303

    [17]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [18]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [19]

    Nicolas V, Giammarinaro B, Derode A, Barrire C 2013 Phys. Rev. E 88 023201

    [20]

    Makse H A, Gland N, Johnson D L, Schwartz L M, Schwartz L 2004 Phys. Rev. E. 70 061302

    [21]

    Vitelli V 2010 Soft Matter 6 3007

    [22]

    Walton K 1987 J. Mech. Phys. Solids 35 213

    [23]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [24]

    Gilles B, Coste C 2003 Phys. Rev. Lett. 90 174302

    [25]

    Goddard J D 1990 Proc. R. Soc. Lond. Ser. A 430 105

  • [1] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控. 物理学报, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [2] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [3] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现. 物理学报, 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [4] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [5] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究. 物理学报, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [6] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [7] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [8] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [10] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质. 物理学报, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [11] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [12] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [13] 姜泽辉, 张峰, 郭波, 赵海发, 郑瑞华. 受振颗粒“毛细”系统中的对流与有序化. 物理学报, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [14] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析. 物理学报, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [16] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [17] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究. 物理学报, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [18] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [19] 韩汝取, 史庆藩, 孙 刚. 声波在一维易膨胀介质中传播的计算机模拟. 物理学报, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  5663
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

/

返回文章
返回