搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高低温条件下氟化锂材料的离子激发发光光谱分析

仇猛淋 王广甫 褚莹洁 郑力 胥密 殷鹏

引用本文:
Citation:

高低温条件下氟化锂材料的离子激发发光光谱分析

仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏

Ion beam induced luminescence spectra of lithium fluoride at high-and low-temperature

Qiu Meng-Lin, Wang Guang-Fu, Chu Ying-Jie, Zheng Li, Xu Mi, Yin Peng
PDF
导出引用
  • 在北京师范大学GIC4117串列加速器原有离子激发发光(ion beam induced luminescence,IBIL)分析靶室基础上,安装了可实现80900 K温度范围内精确控温的冷热样品台,实现高低温条件下IBIL光谱的测量.添加金硅面垒探测器,在离子辐照材料样品过程中同步采集背散射离子的计数,实现束流的在线监测.在不同温度下,利用2 MeV H+束轰击氟化锂样品,获得的IBIL光谱中可明显观察到温度对不同发光中心发光效果的影响:激子峰和杂质峰发光在低温条件下更为清晰;高温时各类型F色心的发光强度在较小的注量下即可达到饱和值或开始衰减.辐照初期受扰激子峰(296 nm)发光强度的上升过程表明不能排除受扰激子峰与点缺陷发光中心相关的可能性,激子峰强度的上升源自低注量时核弹性碰撞产生的应变键;温度对空位迁徙速率及非辐射复合的影响是造成发光强度随注量演变差异的重要原因.
    A new ion beam induced luminescence (IBIL) measuring setup, equipped with a custom-made heating/cooling sample stage (the attainable temperature ranges from 80 K to 900 K), has been established on the GIC4117 tandem accelerator in Beijing Normal University. As the yield of back scattering ions is proportional to the beam flux, an Au-Si surface barrier detector is employed to count the back scattering ions synchronously with collecting the IBIL spectra under the multi-channel scaler (MCS) mode of the multichannel analyzer, making it possible to online monitor the beam current. Then, the yield of back scattering ions is used to correct the intensity of the IBIL spectrum and calculate the ion fluence, for eliminating the influence of the beam current fluctuation. IBIL spectra of pure lithium fluoride (LiF) at different temperatures (100, 200, 290, 450, 550 K) under the 2 MeV H+ irradiation are acquired and the significant influence of temperature on luminescence centers is observed. The emission bands relating to exciton recombination (296 and 340 nm) and impurities (400 nm) are more prominent at low temperatures and present quite lower intensities at high temperatures. Moreover, these luminescent intensities decay with ion fluence increase obviously at high temperatures after initially increasing in the early period of irradiation. The initial increase of the disturbed exciton peak at 296 nm can be attributed to the strained bonds produced by nuclear elastic scattering at a low fluence, which was not observed in previous IBIL measurements under high ionization energy density or high ion beam flux. This observed increase indicates that the emission feature may also originate from the emitting centers relating to point defects, not just from exciton transition near lattice or impurities. The luminescent intensities of F2 color centers (peaked at 670 nm) are dominant at all temperatures, while the luminescent intensities of F3+ color centers (peaked at 540 nm) are not obvious at low temperatures and the luminescent intensities of F3-/F2+ color centers (peaked at 880 nm) are weak at high temperatures. The luminescent intensities of these F-type centers reach saturated values at lower fluences at high temperatures. The different evolution behaviors under different temperatures can be due to the influence of temperature on the vacancy migration rate and the non-radiative recombination. In addition, the surface charge accumulation may lead to the luminescent intensities of color centers reaching saturated values at higher fluences, compared with the previous IBIL measurements of LiF. The self-absorption effect would reduce the intensities of F3+ color centers because of the absorption of F-type centers at low temperatures, while the effect is weak at high temperatures due to the degradation of F-type centers.
      通信作者: 王广甫, 88088@bnu.edu.cn
      Corresponding author: Wang Guang-Fu, 88088@bnu.edu.cn
    • Funds: Ion beam induced luminescence spectra of lithium fluoride at high-and low-temperature
    [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Meth. Phys. Res. B 261 475

    [2]

    Furumoto K, Tanabe T 2013 J. Nucl. Mater. 442 S511

    [3]

    Lo Giudice A, Re A, Angelici D, Calusi S, Gelli N, Giuntini L, Massi M, Pratesi G 2012 Anal. Bioanal. Chem. 404 277

    [4]

    Marković N, Siketić Z, Cosic D, Jungb H K, Leeb N H, Hanc W T, Jakića M 2015 Nucl. Instrum. Meth. Phys. Res. B 343 167

    [5]

    Brooks R J, Hole D E, Townsend P D, Wu Z, Gonzalo J, Suarez-Garcia A, Knott P 2002 Nucl. Instrum. Meth. Phys. Res. B 190 709

    [6]

    Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1

    [7]

    Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208

    [8]

    Baldacchini G, Davidson A T, Kalinov V S, Kozakiewicz A G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371

    [9]

    Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132

    [10]

    Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107

    [11]

    Russakova A, Sorokin M V, Schwartz K, Dauletbekovaa A, Akilbekova A, Baizhumanova M, Zdorovetsd M, Koloberdina M 2013 Nucl. Instrum. Meth. Phys. Res. B 313 21

    [12]

    Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum. Meth. Phys. Res. B 245 194

    [13]

    Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23

    [14]

    Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104

    [15]

    Skuratov V A, Didyk A Y, Azm S M A A 1994 Nucl. Instrum. Meth. Phys. Res. B 94 480

    [16]

    Qiu M L, Chu Y J, Xu M, Wang G F 2016 J. Nucl. Radiochem. 38 57 (in Chinese)[仇猛淋, 褚莹洁, 胥密, 王广甫2016核化学与放射化学38 57]

    [17]

    Ginhoven R M V, Jnsson H, Corrales L R 2006 J. Non-Cryst. Solids 352 2589

    [18]

    Jimenez-Rey D, Pea-Rodrguez O, Manzano-Santamara J, Olivares J, Muoz-Martin A, Rivera A, Agull-Lpez F 2012 Nucl. Instrum. Meth. Phys. Res. B 286 282

    [19]

    Itoh N, Duffy D M, Khakshouri S, Stoneham A M 2009 J. Phys. Condens. Mat. 21 474205

  • [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Meth. Phys. Res. B 261 475

    [2]

    Furumoto K, Tanabe T 2013 J. Nucl. Mater. 442 S511

    [3]

    Lo Giudice A, Re A, Angelici D, Calusi S, Gelli N, Giuntini L, Massi M, Pratesi G 2012 Anal. Bioanal. Chem. 404 277

    [4]

    Marković N, Siketić Z, Cosic D, Jungb H K, Leeb N H, Hanc W T, Jakića M 2015 Nucl. Instrum. Meth. Phys. Res. B 343 167

    [5]

    Brooks R J, Hole D E, Townsend P D, Wu Z, Gonzalo J, Suarez-Garcia A, Knott P 2002 Nucl. Instrum. Meth. Phys. Res. B 190 709

    [6]

    Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1

    [7]

    Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208

    [8]

    Baldacchini G, Davidson A T, Kalinov V S, Kozakiewicz A G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371

    [9]

    Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132

    [10]

    Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107

    [11]

    Russakova A, Sorokin M V, Schwartz K, Dauletbekovaa A, Akilbekova A, Baizhumanova M, Zdorovetsd M, Koloberdina M 2013 Nucl. Instrum. Meth. Phys. Res. B 313 21

    [12]

    Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum. Meth. Phys. Res. B 245 194

    [13]

    Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23

    [14]

    Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104

    [15]

    Skuratov V A, Didyk A Y, Azm S M A A 1994 Nucl. Instrum. Meth. Phys. Res. B 94 480

    [16]

    Qiu M L, Chu Y J, Xu M, Wang G F 2016 J. Nucl. Radiochem. 38 57 (in Chinese)[仇猛淋, 褚莹洁, 胥密, 王广甫2016核化学与放射化学38 57]

    [17]

    Ginhoven R M V, Jnsson H, Corrales L R 2006 J. Non-Cryst. Solids 352 2589

    [18]

    Jimenez-Rey D, Pea-Rodrguez O, Manzano-Santamara J, Olivares J, Muoz-Martin A, Rivera A, Agull-Lpez F 2012 Nucl. Instrum. Meth. Phys. Res. B 286 282

    [19]

    Itoh N, Duffy D M, Khakshouri S, Stoneham A M 2009 J. Phys. Condens. Mat. 21 474205

  • [1] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [2] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [3] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [4] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [5] 罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化. 物理学报, 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [6] 仇猛淋, 赵国强, 王庭顺, 罗长维, 王广甫, 张丰收, 吕沙沙, 廖斌. 不同离子辐照氟化锂材料时原位发光光谱测量分析. 物理学报, 2020, 69(10): 107801. doi: 10.7498/aps.69.20200020
    [7] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [8] 刘名扬, 孙维瑾. (Pr3+ ,Yb3+ )共掺氟化物玻璃上转换敏化发光. 物理学报, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [9] 肖思国, 阳效良, 丁建文. Er3+,Er3+/Yb3+掺杂氟化镧超微材料的光谱特性与上转换发光. 物理学报, 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [10] 吴振宇, 杨银堂, 汪家友. 微波电子回旋共振等离子体化学气相淀积法制备非晶氟化碳薄膜的研究. 物理学报, 2006, 55(5): 2572-2577. doi: 10.7498/aps.55.2572
    [11] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [12] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎. 高电荷态离子126Xeq+与Ti固体表面作用的激发光谱. 物理学报, 2003, 52(11): 2768-2773. doi: 10.7498/aps.52.2768
    [13] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质. 物理学报, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [14] 张 龙, 张军杰, 祁长鸿, 林凤英, 胡和方. 稀土离子掺杂的AlF3基氟化物玻璃. 物理学报, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [15] 金庆华, 冯少新, 郭振亚, 李宝会, 丁大同. 碱土氟化物离子晶体中点缺陷形成能计算. 物理学报, 1999, 48(7): 1261-1268. doi: 10.7498/aps.48.1261
    [16] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定. 物理学报, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [17] 曹忠胜, 刘福绥, 赵忠贤. 金属玻璃低温电阻的准粒子无序构形激发模型. 物理学报, 1985, 34(5): 694-699. doi: 10.7498/aps.34.694
    [18] 郑海兴, 吴光照, 干福熹. 氟化物、氟磷酸盐和磷酸盐玻璃中Er3+离子的发光研究. 物理学报, 1985, 34(12): 1582-1594. doi: 10.7498/aps.34.1582
    [19] 孙家锺, 蒋栋成, 施安顿, 周木易. 电子极化对氟化钙离子晶体的弹性系数、压电系数和介电常数的影响. 物理学报, 1965, 21(2): 402-413. doi: 10.7498/aps.21.402
    [20] 吴大猷, 虞福春. 以电子激起及游离化锂原子几率. 物理学报, 1944, 5(2): 162-179. doi: 10.7498/aps.5.162
计量
  • 文章访问数:  4858
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 修回日期:  2017-07-02
  • 刊出日期:  2017-10-05

/

返回文章
返回