搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒物质内自旋小球运动行为的数值模拟研究

程琦 冉宪文 刘苹 汤文辉 Raphael Blumenfeld

引用本文:
Citation:

颗粒物质内自旋小球运动行为的数值模拟研究

程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld

Numerical simulation of a spinning sphere moving in granular matter

Cheng Qi, Ran Xian-Wen, Liu Ping, Tang Wen-Hui, Raphael Blumenfeld
PDF
导出引用
  • 针对大耳沙蜥在沙子中的运动行为,以球形物体为研究对象,利用3维离散元数值模拟程序LIGGGHTS模拟了旋转运动模式对颗粒物质中球形物体平动和上升/下降行为的影响,定量分析了旋转速度以及颗粒间摩擦系数等因素的具体影响.研究结果表明:球形物体与颗粒物质基底颗粒间的摩擦系数以及球形物体的自转角速度对球形物体的运动有明显影响,摩擦系数越大物体运动越明显,自转角速度越大物体运动越明显.该结果比较好地解释了沙漠生物外表具有鳞片的原因.
    Recently, how the desert lizards run, hide or swim in the sand has attracted much attention of many scientists in granular matter field, and many valuable results have been published, except for the Phrynocephalus mystaceus, a type of the desert lizard, which can embeds itself into the sand through a motion mode which is completely different from other types of desert lizards. To illuminate the roles played by the spinning-mode in the Phrynocephalus mystaceus' motion in the sand, the three-dimentional (3D) numerical simulation using the Hertz model on the system, in which one sphere is spinning in the granular matter, is carried out with the open-source code LIGGGHTS released by the Sandia National Laboratory in USA. In the numerical simulations for all the cases, the initial conditions are the same and the sphere spins around X-axis while the X-Y plane is the horizontal plan and the Z axis is the vertical direction. According to the numerical results and analyses, for the spinning sphere deeply embedded in the granular matter we can draw some conclusions. 1) The X-axis spinning motion can cause the sphere embedded in the granular to notably displace along the Z-axis and Y-axis, but the displacement along the spinning direction is smaller than the sphere diameter. 2) The friction coefficient between the sphere and the granular matter has a notable influence on the motion of the sphere in granular matter, the spinning sphere can move vertically and horizontally only when the friction coefficient between the sphere and the granular matter is larger than that of the granular matter; and the bigger the , the more violent the movement of the sphere is. This can be used to explain why most of the desert creatures each have a coarse skin. 3) On the premise that the friction coefficient between the sphere and the granular matter is larger than that of the granular matter, the spinning velocity of the sphere also has a great influence on the movement of the sphere in the granular matter. In a spinning velocity range between 10 rad/s and 640 rad/s, the larger the , the more obvious the movement of the sphere is. When the spinning velocity reaches 1280 rad/s, the movement of the sphere slightly decreases compared with when the spinning velocity is 640 rad/s. 4) For the spining sphere in granular matter, the sphere always moves upward in the Z direction, but in the Y direction the sphere may move in a positive or negative direction depending on the and . The sphere moves in the positive direction of Y axis if the and are relatively small, while it moves in the negative direction if the and are larger.
      Corresponding author: Ran Xian-Wen, ranxianwen@163.com;wenhuitang@163.com ; Tang Wen-Hui, ranxianwen@163.com;wenhuitang@163.com
    • Funds: Project supported by the Advanced Project of National School of Defense Technology, China (Grant No. ZK16-03-01).
    [1]

    Soller R, Koehler S A 2006 Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 74 021305

    [2]

    Guillard F, Forterre Y, Pouliquen O 2013 Phys. Rev. Lett. 110 138303

    [3]

    Guillard F, Forterre Y, Pouliquen O 2014 Phys. Fluids 26 043301

    [4]

    Guillard F, Forterre Y, Pouliquen O 2015 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 91 022201

    [5]

    Knight J B, Ehrichs E E, Kuperman V Y, Flint J K, Jaeger H M, Nagel S R 1996 Phys. Rev.. 54 5726

    [6]

    Eshuis P, van der Meer D, Alam M, van Gerner H J, van der Weele K, Lohse D 2010 Phys. Rev. Lett. 104 038001

    [7]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [8]

    Mbius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [9]

    Shinbrot T 2004 Nature 429 352

    [10]

    Cheuk C Y, White D J, Bolton M D 2008 J. Geotech. Geoenviron. Eng. 134 154

    [11]

    Metcalfe G, Shattuck M 1996 Physica A: Stat. Mech. Appl. 233 709

    [12]

    Wood R J K, Wheeler D W 1998 Wear 220 95

    [13]

    Lohse D, Rauhe R, Bergmann R, van der Meer D 2004 Nature 432 689

    [14]

    Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele K, van der Hoef M, Kuipers H 2004 Phys. Rev. Lett. 93 198003

    [15]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420

    [16]

    Clark A H, Petersen A J, Kondic L, Behringer R P 2015 Phys. Rev. Lett. 114 144502

    [17]

    Dowling K J 1996 Ph. D. Dissertation (Pittsburgh: Carnegie Mellon University)

    [18]

    Maladen R D, Ding Y, Li C, Goldman D I 2009 Science 325 314

    [19]

    Maladen R D, Ding Y, Umbanhowar P B, Kamor A, Goldman D I 2011 J. R. Soc. Interface 8 1332

    [20]

    Costantino D J, Bartell J, Scheidler K, Schiffer P 2011 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 83 011305

    [21]

    Percier B, Manneville S, Mcelwaine J N, Morris S W, Taberlet N 2011 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 84 051302

    [22]

    Wassgren C R, Cordova J A, Zenit R, Karion A 2003 Phys. Fluids 15 3318

    [23]

    Chehata D, Zenit R, Wassgren C R 2003 Phys. Fluids 15 1622

    [24]

    Ding Y, Gravish N, Goldman D I 2011 Phys. Rev. Lett. 106 028001

    [25]

    Maladen R D, Umbanhowar P B, Ding Y, Masse A, Doldman D I 2011 Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE Shanghai, China, May 9-13, 2011 p1398

    [26]

    Potiguar F Q, Ding Y 2013 Phys. Rev.. 88 012204

    [27]

    Huang L, Ran X, Blumenfeld R 2016 Phys. Rev.. 94 062906

    [28]

    Kloss C, Goniva C, Hager A, Amberger S, Pirker S 2012 Prog. Comput. Fluid Dyn. 12 140

    [29]

    Sun Q C, Wang G Q 2009 Introduction to Mechanics of Granular Materials.(Beijing: Science Press) p31 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京:科学出版社) 第31页]

    [30]

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501(in Chinese) [黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501]

  • [1]

    Soller R, Koehler S A 2006 Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 74 021305

    [2]

    Guillard F, Forterre Y, Pouliquen O 2013 Phys. Rev. Lett. 110 138303

    [3]

    Guillard F, Forterre Y, Pouliquen O 2014 Phys. Fluids 26 043301

    [4]

    Guillard F, Forterre Y, Pouliquen O 2015 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 91 022201

    [5]

    Knight J B, Ehrichs E E, Kuperman V Y, Flint J K, Jaeger H M, Nagel S R 1996 Phys. Rev.. 54 5726

    [6]

    Eshuis P, van der Meer D, Alam M, van Gerner H J, van der Weele K, Lohse D 2010 Phys. Rev. Lett. 104 038001

    [7]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [8]

    Mbius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [9]

    Shinbrot T 2004 Nature 429 352

    [10]

    Cheuk C Y, White D J, Bolton M D 2008 J. Geotech. Geoenviron. Eng. 134 154

    [11]

    Metcalfe G, Shattuck M 1996 Physica A: Stat. Mech. Appl. 233 709

    [12]

    Wood R J K, Wheeler D W 1998 Wear 220 95

    [13]

    Lohse D, Rauhe R, Bergmann R, van der Meer D 2004 Nature 432 689

    [14]

    Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele K, van der Hoef M, Kuipers H 2004 Phys. Rev. Lett. 93 198003

    [15]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420

    [16]

    Clark A H, Petersen A J, Kondic L, Behringer R P 2015 Phys. Rev. Lett. 114 144502

    [17]

    Dowling K J 1996 Ph. D. Dissertation (Pittsburgh: Carnegie Mellon University)

    [18]

    Maladen R D, Ding Y, Li C, Goldman D I 2009 Science 325 314

    [19]

    Maladen R D, Ding Y, Umbanhowar P B, Kamor A, Goldman D I 2011 J. R. Soc. Interface 8 1332

    [20]

    Costantino D J, Bartell J, Scheidler K, Schiffer P 2011 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 83 011305

    [21]

    Percier B, Manneville S, Mcelwaine J N, Morris S W, Taberlet N 2011 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 84 051302

    [22]

    Wassgren C R, Cordova J A, Zenit R, Karion A 2003 Phys. Fluids 15 3318

    [23]

    Chehata D, Zenit R, Wassgren C R 2003 Phys. Fluids 15 1622

    [24]

    Ding Y, Gravish N, Goldman D I 2011 Phys. Rev. Lett. 106 028001

    [25]

    Maladen R D, Umbanhowar P B, Ding Y, Masse A, Doldman D I 2011 Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE Shanghai, China, May 9-13, 2011 p1398

    [26]

    Potiguar F Q, Ding Y 2013 Phys. Rev.. 88 012204

    [27]

    Huang L, Ran X, Blumenfeld R 2016 Phys. Rev.. 94 062906

    [28]

    Kloss C, Goniva C, Hager A, Amberger S, Pirker S 2012 Prog. Comput. Fluid Dyn. 12 140

    [29]

    Sun Q C, Wang G Q 2009 Introduction to Mechanics of Granular Materials.(Beijing: Science Press) p31 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京:科学出版社) 第31页]

    [30]

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501(in Chinese) [黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501]

  • [1] 尹伊. 强相互作用物质中的自旋与运动关联. 物理学报, 2023, 72(11): 111201. doi: 10.7498/aps.72.20222458
    [2] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [3] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析. 物理学报, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [4] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [5] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [7] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [8] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场. 物理学报, 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [9] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [10] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [11] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星. 以颗粒物理原理认识地震地震成因、地震前兆和地震预测. 物理学报, 2012, 61(11): 119103. doi: 10.7498/aps.61.119103
    [12] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [13] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [14] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [15] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [16] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [19] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
计量
  • 文章访问数:  6898
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-10-12
  • 刊出日期:  2018-01-05

/

返回文章
返回