搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体自发瑞利-布里渊散射的理论分析及压强反演

商景诚 吴涛 何兴道 杨传音

引用本文:
Citation:

气体自发瑞利-布里渊散射的理论分析及压强反演

商景诚, 吴涛, 何兴道, 杨传音

Theoretical analyses of gaseous spontaneous Rayleigh-Brillouin scattering and pressure retrieving

Shang Jing-Cheng, Wu Tao, He Xing-Dao, Yang Chuan-Yin
PDF
导出引用
  • 气体压力是描述体系状态的重要参数,许多物理、化学性质都与压力有关.传统侵入式的压力测量方法会对气体状态产生干扰,影响测量精度,因此需要一种无扰式的测量方法.本实验测量了压强为2,4和6 atm(1 atm=1.01325105 Pa)下加入气溶胶的N2在90散射方向的自发瑞利-布里渊散射光谱,利用卷积后的Tenti S6模型对测量光谱进行直接拟合,拟合得到的压强值总体误差小于6.0%,求和归一化的均方根误差总体小于6.5%;利用理想的Tenti S6模型对经维纳滤波器反卷积处理后的测量光谱进行拟合,拟合得到的压强值误差总体小于5.0%,求和归一化的均方根误差总体小于6.0%.通过对两种方法的详细对比,发现压强低于2 atm时,对测量光谱进行反卷积处理在一定程度上可以消除仪器函数的影响,提高测量光谱的准确性,其光谱拟合效果和压强反演精度要优于卷积光谱.而在压强高于2 atm的情况下,卷积光谱的拟合效果和压强反演精度要优于反卷积光谱.
    The gas pressure is an important parameter describing the status of system and relating to many properties of physics and chemistry. The traditional intrusive method for pressure measurement has some effects on the gas status and the measurement accuracy. Therefore, it is desired to develop a non-intrusive method. The spontaneous Rayleigh-Brillouin scattering (SRBS) is a potential tool for accurate, remote, and non-intrusive pressure measurement. In this paper, the SRBS spectra are simulated using the Tenti S6 model convolved with the instrument function of the measurement system at a 90 scattering angle and pressures of 2, 4, and 6 atm (1 atm = 1.01325105 Pa). In order to eliminate the effect of the instrument function of the measurement system, we propose a deconvolution method by comparing the traditional convolved SRBS method in this paper. According to the principle of the Wiener filter and the truncated singular value decomposition method, the Wiener filtering factor can be obtained. And the deconvolved spectra are obtained by convolving the stimulated spectra with the Wiener filtering factor. We find that the deconvolved spectra are coincident well with those from the Tenti S6 model without convolving with system transmission function. In order to compare the accuracy of the convolution method with that of the deconvolution method in experiment, the SRBS spectra of N2 mixed with aerosols are measured at a 90 scattering angle and pressures of 2, 4, and 6 atm respectively. The experimentally obtained raw spectra are fitted with the theoretical spectra, which are obtained by convolving the Tenti S6 model with the instrument function of the measurement system. The relative errors of retrieved pressure are all less than 6.0%, and the normalized root-mean-square deviation is calculated and found to be less than 6.5%. On the other hand, the deconvolved spectra are obtained by convolving the experimentally obtained raw spectra with the Wiener filtering factor and then fitted with theoretical calculated spectra from Tenti S6 model without convolving with system transmission function. The relative errors of retrieved pressure are all less than 5.0%, and the normalized root-mean-square error is less than 6.0%. By comparing the two methods, it can be found that the deconvolution method can eliminate the effect of instrument function of the measurement system and improve the resolution of Rayleigh-Brillouin scattering spectrum. The performance of fitting and the accuracy of pressure retrieving show that the deconvolution method is better than the convolution method under lower pressure (2 atm), but worse than the convolution method under higher pressure (2 atm). The comparison result demonstrates that the deconvolution based on the Wiener filter is likely to be directly applied to the exploring of the properties of the combustor in aero engine, such as pressure profile retrieval or temperature measurements.
      通信作者: 吴涛, wutccnu@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41665001,61177096)和航空科学基金(批准号:2015ZC56006)资助的课题.
      Corresponding author: Wu Tao, wutccnu@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41665001, 61177096) and the Aeronautical Science Fund, China (Grant No. 2015ZC56006).
    [1]

    Boley C D, Desai R C, Tenti G 1972 Can. J. Phys. 50 2158

    [2]

    Ma Y, Liang K, Lin H, Ji H 2007 Acta Opt. Sin. 27 962 (in Chinese) [马泳, 梁琨, 林宏, 冀航 2007 光学学报 27 962]

    [3]

    Gu Z, Ubachs W, Marques Jr W, van de Water W 2015 Phys. Rev. Lett. 114 243902

    [4]

    Cao C L, Xu S L, Liu E W 2013 J. Univ. Sci. Tech. China 43 510 (in Chinese) [曹春丽, 徐胜利, 刘二伟 2013 中国科学技术大学学报 43 510]

    [5]

    Gu Z Y, Ubachs W, van de Water W 2014 Opt. Lett. 39 3301

    [6]

    Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315

    [7]

    Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112

    [8]

    Lock J A, Seasholtz R G, John W T 1992 Appl. Opt. 31 2839

    [9]

    Pan X G, Shneider M N, Miles R B 2005 Phys. Rew. A 71 045801

    [10]

    Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655

    [11]

    Tenti G, Boley C D, Desai R C 1974 Can. J. Phys. 52 285

    [12]

    Gu Z, Witschas B, van de Water W 2013 Appl. Opt. 52 4640

    [13]

    Vieitez M O, van Duijn E J, Ubachs W 2010 Phys. Rev. A 82 043836

    [14]

    Witschas B, Vieitez M O, van Duijn E J, Reitebuch O, van de Water W, Ubachs W 2010 Appl. Opt. 49 4217

    [15]

    Witschas B, Lemmerz C, Reitebuch O 2012 Appl. Opt. 51 6207

    [16]

    Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972

    [17]

    Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441

    [18]

    Wang Y Q, Yu Y, Liang K, Marques Jr W, van de Water W, Ubachs W 2017 Chem. Phys. Lett. 669 137

    [19]

    Levinson N 1946 Stud. Appl. Math. 25 261

    [20]

    Golub G H, Reinsch C 1970 Numer. Math. 14 403

    [21]

    Henry E R, Hofrichter J 1992 Meth. Enzymol. 210 129

    [22]

    Hansen P C 1990 SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 11 503

  • [1]

    Boley C D, Desai R C, Tenti G 1972 Can. J. Phys. 50 2158

    [2]

    Ma Y, Liang K, Lin H, Ji H 2007 Acta Opt. Sin. 27 962 (in Chinese) [马泳, 梁琨, 林宏, 冀航 2007 光学学报 27 962]

    [3]

    Gu Z, Ubachs W, Marques Jr W, van de Water W 2015 Phys. Rev. Lett. 114 243902

    [4]

    Cao C L, Xu S L, Liu E W 2013 J. Univ. Sci. Tech. China 43 510 (in Chinese) [曹春丽, 徐胜利, 刘二伟 2013 中国科学技术大学学报 43 510]

    [5]

    Gu Z Y, Ubachs W, van de Water W 2014 Opt. Lett. 39 3301

    [6]

    Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315

    [7]

    Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112

    [8]

    Lock J A, Seasholtz R G, John W T 1992 Appl. Opt. 31 2839

    [9]

    Pan X G, Shneider M N, Miles R B 2005 Phys. Rew. A 71 045801

    [10]

    Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655

    [11]

    Tenti G, Boley C D, Desai R C 1974 Can. J. Phys. 52 285

    [12]

    Gu Z, Witschas B, van de Water W 2013 Appl. Opt. 52 4640

    [13]

    Vieitez M O, van Duijn E J, Ubachs W 2010 Phys. Rev. A 82 043836

    [14]

    Witschas B, Vieitez M O, van Duijn E J, Reitebuch O, van de Water W, Ubachs W 2010 Appl. Opt. 49 4217

    [15]

    Witschas B, Lemmerz C, Reitebuch O 2012 Appl. Opt. 51 6207

    [16]

    Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972

    [17]

    Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441

    [18]

    Wang Y Q, Yu Y, Liang K, Marques Jr W, van de Water W, Ubachs W 2017 Chem. Phys. Lett. 669 137

    [19]

    Levinson N 1946 Stud. Appl. Math. 25 261

    [20]

    Golub G H, Reinsch C 1970 Numer. Math. 14 403

    [21]

    Henry E R, Hofrichter J 1992 Meth. Enzymol. 210 129

    [22]

    Hansen P C 1990 SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 11 503

  • [1] 贺文君, 侯雅斐, 闫嵩泉, 吴泽鹏, 刘毅, 游亚军, 何剑. 铌酸锂微米光纤模内后向布里渊散射特性研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241329
    [2] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [3] 唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷. 基于中频域维纳滤波的非视域成像算法研究. 物理学报, 2023, 72(1): 014210. doi: 10.7498/aps.72.20221600
    [4] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [5] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [6] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [7] 任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 相干瑞利散射海水水下温度测量技术的理论研究. 物理学报, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [8] 岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪. 一种新的单光源多波长双向量子密钥分发系统. 物理学报, 2012, 61(18): 184215. doi: 10.7498/aps.61.184215
    [9] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [10] 付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文. 瑞利散射法研究超声喷流二氧化碳团簇尺度轴向分布. 物理学报, 2011, 60(5): 053602. doi: 10.7498/aps.60.053602
    [11] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [12] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [13] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [14] 刘猛, 陆建峰, 韩纪峰, 李佳, 罗小兵, 缪竞威, 师勉恭, 杨朝文. 超声喷流Ar团簇生长演化过程及团簇尺寸轴向分布的实验研究. 物理学报, 2009, 58(10): 6951-6955. doi: 10.7498/aps.58.6951
    [15] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [16] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [17] 王 磊, 吴玉迟, 王红斌, 刘红杰, 葛芳芳, 陈家斌, 郑志坚, 谷渝秋, 史叔廷, 罗小兵, 杨朝文. 低温高背压氘团簇源特性研究. 物理学报, 2007, 56(12): 6918-6923. doi: 10.7498/aps.56.6918
    [18] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [19] 董全力, 燕 飞, 张 杰, 金 展, 杨 辉, 郝作强, 陈正林, 李玉同, 魏志义, 盛政明. 大气中激光等离子体通道寿命的延长及测量分析. 物理学报, 2005, 54(7): 3247-3250. doi: 10.7498/aps.54.3247
    [20] 寿 倩, 张海潮, 邓 莉, 刘叶新, 林位株. 四波混频与瑞利散射场的干涉现象. 物理学报, 2003, 52(4): 1019-1022. doi: 10.7498/aps.52.1019
计量
  • 文章访问数:  7101
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-02-05

/

返回文章
返回