搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形二维光子晶体太阳电池数值模拟

陈培专 于莉媛 牛萍娟 付贤松 杨广华 张建军 侯国付

引用本文:
Citation:

锥形二维光子晶体太阳电池数值模拟

陈培专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付

Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells

Chen Pei-Zhuan, Yu Li-Yuan, Niu Ping-Juan, Fu Xian-Song, Yang Guang-Hua, Zhang Jian-Jun, Hou Guo-Fu
PDF
导出引用
  • 采用时域有限差分方法,模拟研究在本征吸收层引入锥形二维光子晶体(2D PC)后,其结构参数变化对单结微晶硅电池各膜层吸收的影响规律.研究表明,2D PC的纵横比(高度与周期之比)对电池本征吸收具有决定性影响.周期小于1 m时,本征吸收随着纵横比的增大先上升后下降,纵横比为1时达到最大值;周期大于1 m时,本征吸收达到最大值的纵横比小于1,且周期越大,实现本征吸收最大化的纵横比越小.当周期为0.5 m,纵横比为1时,锥形2D PC电池的本征吸收达到峰值,短路电流密度为27.8 mA/cm2;与平面结构相比,短路电流密度提升5.8 mA/cm2,相对增加27%.该研究突破了以往认为绒面陷光效果主要取决于绒面形貌横向特征尺寸的观点,对实验获取最佳的周期或随机绒面陷光结构具有指导意义.
    To further improve the absorption of thin-film silicon solar cells (TFSSCs), it is essential to understand what kind of texture morphology could present the best light trapping effect, or rather, which structural parameter plays the most important role, and offers the required lateral feature size, height or others. In this paper, the influences of structural parameters of conical two-dimensional photonic crystal (2D PC) on each-layer absorption of the microcrystalline silicon thin film solar cells are numerically studied by using the finite-difference time-domain method when 2D PC is introduced into the intrinsic layer. The results show that both the intrinsic absorption and parasitic absorption are significantly enhanced via introduction of 2D PC into the intrinsic layer. The parasitic absorption is mainly caused by the ITO layer, and the intrinsic absorption shows a sinusoidal fluctuation with the increase of period. It is found that the aspect ratio (height/period) of the 2D PC has a decisive influence on the cell intrinsic absorption. When the period of the 2D PC is less than 1m, the intrinsic absorption first increases and then decreases with the increase of the aspect ratio, and reaches a maximum value with an aspect ratio of 1. For the case of period larger than 1m, the aspect ratio needed to obtain the maximum result is smaller than 1. What is more, the larger the period, the smaller the aspect ratio for maximizing the intrinsic absorption will be. The peak intrinsic absorption can be obtained when a 2D PC with a period of 0.5m and an aspect ratio of 1 is introduced. Compared with that of the flat cell, the short-circuited current density of the above optimized 2D PC cell can be significantly enhanced by 5.8 mA/cm2(from 21.9 to 27.8 mA/cm2), corresponding to a relative enhancement of 27%. In order to improve antireflection performance, it is critical to adopt a textured front-surface morphology where the aspect ratio is higher than 1/2. In addition, the intrinsic absorption increases with the increasing fill factor, and reaches a maximum value when the fill factor of the 2D PC is close to 0.9. The research results of this paper break through the traditional viewpoint of light trapping mechanism which points out that the light trapping effect is mainly dependent on the lateral feature size of the texture, and provide an important guide for obtaining optimized random or periodic texture via experiment.
      通信作者: 于莉媛, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com ; 牛萍娟, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com
    • 基金项目: 高等学校学科创新引智计划(批准号:B16027)、国家自然科学基金(批准号:61176060,61404074,61504069,61377031,61605145)、天津市自然科学基金(批准号:14JCQNJC02100)和光学信息技术科学教育部重点实验室(南开大学)开放基金(批准号:2017KFKT015)资助的课题.
      Corresponding author: Yu Li-Yuan, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com ; Niu Ping-Juan, Yuliyuan@tjpu.edu.cn;Pjniu@outlook.com
    • Funds: Project supported by the Program of Introducing Talents of Discipline to Universities, China (Grant No. B16027), the National Natural Science Foundation of China (Grant Nos. 61176060, 61404074, 61504069, 61377031, 61605145), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02100), and the Open Fund of the Key Laboratory of Optical Information Science Technology (Nankai University), Ministry of Education, China (Grant No. 2017KFKT015).
    [1]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J 2004 Prog. Photovoltaics 12 113

    [2]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hupkes J, Ballif C 2016 Sol. Energ. Mat. Sol. C 145 185

    [3]

    Muller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M 2015 Sol. Energ. Mat. Sol. C 135 78

    [5]

    Isabella O 2013 Ph. D. Dissertation (Delft: Delft University of Technology)

    [6]

    Hsu C M, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C, Cui Y 2012 Adv. Energy. Mater. 2 628

    [7]

    Tan H, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070

    [8]

    Chen P Z, Hou G F, Fan Q H, Ni J, Zhang J J, Huang Q, Zhang X D, Zhao Y 2015 Sol. Energ. Mat. Sol. C 143 435

    [9]

    Yan B, Yue G, Sivec L, Owens-Mawson J, Yang J, Guha S 2012 Sol. Energ. Mat. Sol. C 104 13

    [10]

    Yan B, Yue G, Sivec L, Yang J, Guha S 2011 Appl. Phys. Lett. 99 113512

    [11]

    Sai H, Matsui T, Matsubara K, Kondo M, Yoshida I 2014 IEEE J. Photovolt. 4 1349

    [12]

    Sai H, Matsui T, Saito K, Kondo M, Yoshida I 2015 Prog. Photovoltaics 23 1572

    [13]

    Lin Y Y, Xu Z, Yu D L, Lu L F, Yin M, Tavakoli M M, Chen X Y, Hao Y Y, Fan Z Y, Cui Y X 2016 ACS Appl. Mater. Interfaces 8 10929

    [14]

    Tanaka Y, Ishizaki K, Zoysa M D, Umeda T, Kawamoto Y, Fujita S, Noda S 2015 Prog. Photovoltaics 23 1475

    [15]

    Ishizaki K, de Zoysa M, Tanaka Y, Umeda T, Kawamoto Y, Noda S 2015 Opt. Express 23 1040

    [16]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [17]

    Tan H R, Psomadaki E, Isabella O, Fischer M, Babal P, Vasudevan R, Zeman M, Smets A H M 2013 Appl. Phys. Lett. 103 173905

    [18]

    Tan H, Moulin E, Si F T, Schuttauf J W, Stuckelberger M, Isabella O, Haug F J, Ballif C, Zeman M, Smets A H M 2015 Prog. Photovoltaics 23 949

    [19]

    Sai H, Saito K, Kondo M 2013 IEEE J. Photovolt. 3 5

    [20]

    Moulin E, Steltenpool M, Boccard M, Garcia L, Bugnon G, Stuckelberger M, Feuser E, Niesen B, van Erven R, Schuttauf J W 2014 IEEE J. Photovolt. 4 1177

    [21]

    Dewan R, Shrestha S, Jovanov V, Hupkes J, Bittkau K, Knipp D 2015 Sol. Energ. Mat. Sol. C 143 183

    [22]

    Soh H J, Yoo J, Kim D 2012 Sol. Energy 86 2095

    [23]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2015 Opt. Express 23 896

    [24]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2014 IEEE J. Photovolt. 6 4700110

    [25]

    Gomard G, Peretti R, Callard S, Meng X, Artinyan R, Deschamps T, Roca I, Cabarrocas P, Drouard E, Seassal C 2014 Appl. Phys. Lett. 104 051119

    [26]

    Tamang A, Sai H, Jovanov V, Hossain M I, Matsubara K, Knipp D 2016 Prog. Photovoltaics 24 379

    [27]

    Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F 2014 Opt. Express 22 20473

    [28]

    Fisker C, Pedersen T G 2013 Opt. Express 21 208

    [29]

    Chen P Z, Hou G F, Zhang J J, Zhang X D, Zhao Y 2014 J. Appl. Phys. 116 064508

    [30]

    Curtin B, Biswas R, Dalal V 2009 Appl. Phys. Lett. 95 231102

  • [1]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J 2004 Prog. Photovoltaics 12 113

    [2]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hupkes J, Ballif C 2016 Sol. Energ. Mat. Sol. C 145 185

    [3]

    Muller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M 2015 Sol. Energ. Mat. Sol. C 135 78

    [5]

    Isabella O 2013 Ph. D. Dissertation (Delft: Delft University of Technology)

    [6]

    Hsu C M, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C, Cui Y 2012 Adv. Energy. Mater. 2 628

    [7]

    Tan H, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070

    [8]

    Chen P Z, Hou G F, Fan Q H, Ni J, Zhang J J, Huang Q, Zhang X D, Zhao Y 2015 Sol. Energ. Mat. Sol. C 143 435

    [9]

    Yan B, Yue G, Sivec L, Owens-Mawson J, Yang J, Guha S 2012 Sol. Energ. Mat. Sol. C 104 13

    [10]

    Yan B, Yue G, Sivec L, Yang J, Guha S 2011 Appl. Phys. Lett. 99 113512

    [11]

    Sai H, Matsui T, Matsubara K, Kondo M, Yoshida I 2014 IEEE J. Photovolt. 4 1349

    [12]

    Sai H, Matsui T, Saito K, Kondo M, Yoshida I 2015 Prog. Photovoltaics 23 1572

    [13]

    Lin Y Y, Xu Z, Yu D L, Lu L F, Yin M, Tavakoli M M, Chen X Y, Hao Y Y, Fan Z Y, Cui Y X 2016 ACS Appl. Mater. Interfaces 8 10929

    [14]

    Tanaka Y, Ishizaki K, Zoysa M D, Umeda T, Kawamoto Y, Fujita S, Noda S 2015 Prog. Photovoltaics 23 1475

    [15]

    Ishizaki K, de Zoysa M, Tanaka Y, Umeda T, Kawamoto Y, Noda S 2015 Opt. Express 23 1040

    [16]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [17]

    Tan H R, Psomadaki E, Isabella O, Fischer M, Babal P, Vasudevan R, Zeman M, Smets A H M 2013 Appl. Phys. Lett. 103 173905

    [18]

    Tan H, Moulin E, Si F T, Schuttauf J W, Stuckelberger M, Isabella O, Haug F J, Ballif C, Zeman M, Smets A H M 2015 Prog. Photovoltaics 23 949

    [19]

    Sai H, Saito K, Kondo M 2013 IEEE J. Photovolt. 3 5

    [20]

    Moulin E, Steltenpool M, Boccard M, Garcia L, Bugnon G, Stuckelberger M, Feuser E, Niesen B, van Erven R, Schuttauf J W 2014 IEEE J. Photovolt. 4 1177

    [21]

    Dewan R, Shrestha S, Jovanov V, Hupkes J, Bittkau K, Knipp D 2015 Sol. Energ. Mat. Sol. C 143 183

    [22]

    Soh H J, Yoo J, Kim D 2012 Sol. Energy 86 2095

    [23]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2015 Opt. Express 23 896

    [24]

    Kawamoto Y, Tanaka Y, Ishizaki K, de Zoysa M, Asano T, Noda S 2014 IEEE J. Photovolt. 6 4700110

    [25]

    Gomard G, Peretti R, Callard S, Meng X, Artinyan R, Deschamps T, Roca I, Cabarrocas P, Drouard E, Seassal C 2014 Appl. Phys. Lett. 104 051119

    [26]

    Tamang A, Sai H, Jovanov V, Hossain M I, Matsubara K, Knipp D 2016 Prog. Photovoltaics 24 379

    [27]

    Shi Y, Wang X, Liu W, Yang T, Ma J, Yang F 2014 Opt. Express 22 20473

    [28]

    Fisker C, Pedersen T G 2013 Opt. Express 21 208

    [29]

    Chen P Z, Hou G F, Zhang J J, Zhang X D, Zhao Y 2014 J. Appl. Phys. 116 064508

    [30]

    Curtin B, Biswas R, Dalal V 2009 Appl. Phys. Lett. 95 231102

  • [1] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前. Ag@SiO2耦合结构设计及其对薄膜太阳电池的响应调控. 物理学报, 2020, 69(18): 188801. doi: 10.7498/aps.69.20200334
    [3] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [4] 陈园园, 杨盼杰, 张玮芝, 阎晓娜. 光子晶体理论研究的新方法混合变分法. 物理学报, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [5] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [6] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] 陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖. 基于一维光子晶体的新型背反射器及其在非晶硅薄膜太阳电池中的应用. 物理学报, 2014, 63(7): 077301. doi: 10.7498/aps.63.077301
    [8] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] 陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖. 硅基薄膜太阳电池一维光子晶体背反射器的模拟设计与制备. 物理学报, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [10] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] 贾玉坤, 杨仕娥, 郭巧能, 陈永生, 郜小勇, 谷锦华, 卢景霄. 非晶硅太阳电池宽光谱陷光结构的优化设计. 物理学报, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [12] 于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖. PIN型和NIP型硅薄膜太阳电池中绒面陷光结构和陷光性能研究. 物理学报, 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
    [13] 李涛, 周春兰, 宋洋, 杨海峰, 郜志华, 段野, 李友忠, 刘振刚, 王文静. 晶体硅太阳电池金属电极光学损失的理论分析与实验研究. 物理学报, 2011, 60(9): 098801. doi: 10.7498/aps.60.098801
    [14] 郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖. 单室沉积非晶硅/非晶硅/微晶硅三叠层太阳电池的研究. 物理学报, 2011, 60(6): 068801. doi: 10.7498/aps.60.068801
    [15] 张建心, 屈道宽, 冯帅, 王义全, 王传奎. 微腔旋转对耦合腔光波导群速度的影响. 物理学报, 2009, 58(12): 8339-8344. doi: 10.7498/aps.58.8339
    [16] 程旭攀, 曹全喜. 二维圆柱形光子晶体的完全禁带研究. 物理学报, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [17] 赵明明, 吕燕伍, 余家新, 庞许倩. 旋转对二维正方晶格介质柱内空结构光子晶体禁带的影响. 物理学报, 2008, 57(2): 1061-1065. doi: 10.7498/aps.57.1061
    [18] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [19] 汪静丽, 陈鹤鸣. 二维棋盘格子复式晶格的完全光子带隙研究. 物理学报, 2007, 56(2): 922-926. doi: 10.7498/aps.56.922
    [20] 田 洁, 韩守振, 程丙英, 李志远, 冯 帅, 张道中, 金爱子. 部分空气桥式硅膜二维光子晶体. 物理学报, 2005, 54(3): 1218-1221. doi: 10.7498/aps.54.1218
计量
  • 文章访问数:  5609
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2017-10-03
  • 刊出日期:  2019-01-20

/

返回文章
返回