搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石色心自旋磁共振效应的微位移测量方法

王磊 郭浩 陈宇雷 伍大锦 赵锐 刘文耀 李春明 夏美晶 赵彬彬 朱强 唐军 刘俊

引用本文:
Citation:

基于金刚石色心自旋磁共振效应的微位移测量方法

王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊

A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center

Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun
PDF
导出引用
  • 基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.
    As one of the excellent piezoelectric materials, piezoelectric ceramic has been widely used to develop a highly precise displacement measurement system, which is the key part of the scanning probe system of the high-precision measuring instrument.Based on the high-precision scanning probe system, the micro/nano structures can be easily and accurately detected by the instrument system.However, due to the limitations caused by the character of hysteresis and nonlinearity, it is difficult to further improve the precision of highly precise displacement measurement system.In this work, we present a novel method to develop the highly precise displacement measurement system based on the quantum spin effect.The nitrogen vacancy (NV) color center of single crystal diamond as a sensitive element senses the change of the micro-displacement.Based on the electron spin magnetic resonance effect of diamond nitrogen vacancy color center, the variation of the magnetic field generated from the magnetic steel can be detected with high precision by the electron spin.The relative relation between the displacement and the magnetic gradient field can be used to establish the correlation model between the displacement and the electron spin resonance peak.In the experiment, a corresponding micro-displacement measurement system is established based on the cylindrical permanent magnet, according to the correlation model between the electron spin resonance effect and micro-displacement.The linear region of magnetic field gradient is designed to detect the micro-displacement.Firstly, the intensity distribution of magnetic field gradient is measured by the gauss meter.As the measurement results show, the gradient value is -7.77 Gauss/mm along the core axis of cylindrical permanent magnet, and the intensity of magnetic field gradient distribution region is linear in the millimeter range.Meanwhile, the electron spin magnetic resonance peak of diamond nitrogen vacancy color center is achieved by the optically detected magnetic resonance technology.The electron spin magnetic resonance peak is approximately 2.79 MHz/Gauss in the magnetic field achieved by the fluorescence spectrum of diamond nitrogen vacancy color center, attributed to the relation model between Zeeman splitting effect and magnetic field. In the experiment, the electron spin magnetic resonance signal of diamond nitrogen vacancy color center is lockedin by the demodulation method to achieve the change of micro-displacement.As the results show, the sensitivity is about 16.67 V/mm at the corresponding demodulation frequency of 3000.56 MHz.By the calculation, the resolution of micro-displacement measurement system is about 60 nm based on our method.It proves out a high precision and well reliability method to detect the micro-displacement.By the further theoretical calculation, based on the electron spin effect, the detection resolution of our method can be enhanced up to sub-nanometer scale by reducing the distance between the NV color center and the magnet.It presents a new research direction and field for the micro-displacement detection system.
      通信作者: 唐军, tangjun@nuc.edu.cn;liuj@nuc.edu.cn ; 刘俊, tangjun@nuc.edu.cn;liuj@nuc.edu.cn
    • 基金项目: 国家自然科学基金国家重大科研仪器研制项目(批准号:51727808)、国家自然科学基金重点项目(批准号:51635011)、山西省青年拔尖人才计划(批准号:2016002)和山西省1331工程重点学科建设计划经费资助的课题.
      Corresponding author: Tang Jun, tangjun@nuc.edu.cn;liuj@nuc.edu.cn ; Liu Jun, tangjun@nuc.edu.cn;liuj@nuc.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument Research and Manufacture Program of the National Natural Science Foundation of China (Grant No. 51727808), the Key Fund Program of the National Natural Science Foundation of China (Grant No. 51635011), the Outstanding Youth Talents Program of Shanxi Province, China (Grant No. 2016002), and the Shanxi 1331 Project Key Subjects Construction, China.
    [1]

    Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295

    [2]

    Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504

    [3]

    Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181

    [4]

    Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342

    [5]

    Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219

    [6]

    Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]

    [8]

    Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84

    [9]

    Liu Y T, Li B J 2016 Precis. Eng. 46 118

    [10]

    Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89

    [11]

    Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864

    [12]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320

    [13]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [14]

    Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065

    [15]

    Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202

    [16]

    Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393

    [17]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125

    [18]

    Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403

    [19]

    Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802

    [20]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [21]

    Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191

    [22]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [23]

    Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330

    [24]

    Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]

    [25]

    Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]

  • [1]

    Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295

    [2]

    Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504

    [3]

    Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181

    [4]

    Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342

    [5]

    Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219

    [6]

    Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]

    [8]

    Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84

    [9]

    Liu Y T, Li B J 2016 Precis. Eng. 46 118

    [10]

    Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89

    [11]

    Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864

    [12]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320

    [13]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [14]

    Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065

    [15]

    Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202

    [16]

    Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393

    [17]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125

    [18]

    Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403

    [19]

    Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802

    [20]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [21]

    Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191

    [22]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [23]

    Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330

    [24]

    Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]

    [25]

    Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [6] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [8] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [9] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [10] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [11] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [12] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [13] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [14] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [15] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [16] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [17] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [18] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [19] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [20] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
计量
  • 文章访问数:  7074
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-12-14
  • 刊出日期:  2019-02-20

/

返回文章
返回